If $A B$ is a diameter of a circle and $C$ is any point on the circle, then show that the area of $\triangle A B C$ is maximum, when it is isosceles.
We have, $$A B=2 r$$
and $\angle A C B=90^{\circ} \quad$ [since, angle in the semi-circle is always $90^{\circ}$ ]
Let $A C=x$ and $B C=y$
$$\begin{array}{ll} \therefore & (2 r)^2=x^2+y^2 \\ \Rightarrow & y^2=4 r^2-x^2 \\ \Rightarrow & y=\sqrt{4 r^2-x^2}\quad\text{.... (i)} \end{array}$$
$$\begin{aligned} \text { Now, } \quad \quad \text { area of } \triangle A B C, A & =\frac{1}{2} \times x \times y \\ & =\frac{1}{2} \times x \times\left(4 r^2-x^2\right)^{1 / 2}\quad\text{[using Eq. (i)]} \end{aligned}$$
$$\begin{aligned} &\text { Now, differentiating both sides w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d A}{d x} & =\frac{1}{2}\left[x \cdot \frac{1}{2}\left(4 r^2-x^2\right)^{-1 / 2} \cdot(0-2 x)+\left(4 r^2-x^2\right)^{1 / 2} \cdot 1\right] \\ & =\frac{1}{2}\left[\frac{-2 x^2}{2 \sqrt{4 r^2-x^2}}+\left(4 r^2-x^2\right)^{1 / 2}\right] \end{aligned} \end{aligned}$$
$$\begin{aligned} & =\frac{1}{2}\left[\frac{-x^2}{\sqrt{4 r^2-x^2}}+\sqrt{4 r^2-x^2}\right] \\ & =\frac{1}{2}\left[\frac{-x^2+4 r^2-x^2}{\sqrt{4 r^2-x^2}}\right]=\frac{1}{2}\left[\frac{-2 x^2+4 r^2}{\sqrt{4 r^2-x^2}}\right] \end{aligned}$$
$$\begin{array}{lrl} \Rightarrow & \frac{d A}{d x} & =\left[\frac{\left(-x^2+2 r^2\right)}{\sqrt{4 r^2-x^2}}\right] \\ \text { Now, } & \frac{d A}{d x} & =0 \\ \Rightarrow & -x^2+2 r^2 & =0 \\ \Rightarrow & r^2 & =\frac{1}{2} x^2 \\ \Rightarrow & r & =\frac{1}{\sqrt{2}} x \\ \therefore & x & =r \sqrt{2} \end{array}$$
Again, differentiating both sides w.r.t. x, we get
$$\begin{aligned} \frac{d^2 A}{d x^2} & =\frac{\sqrt{4 r^2-x^2} \cdot(-2 x)+\left(2 r^2-x^2\right) \cdot \frac{1}{2}\left(4 r^2-x^2\right)^{-1 / 2}(-2 x)}{\left(\sqrt{4 r^2-x^2}\right)^2} \\ & =\frac{-2 x\left[\sqrt{4 r^2-x^2}+\left(2 r^2-x^2\right) \cdot \frac{1}{2 \sqrt{4 r^2-x^2}}\right]}{\left(\sqrt{4 r^2-x^2}\right)^2} \\ & =\frac{-4 x \cdot\left(\sqrt{4 r^2-x^2}\right)^2+\left(2 r^2-x^2\right)(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \\ & =\frac{-4 x\left(4 r^2-x^2\right)+\left(2 r^2-x^2\right) \cdot(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \\ & =\frac{-16 x r^2+4 x^3+\left(2 r^2-x^2\right)(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \end{aligned}$$
$$\begin{aligned} \left(\frac{d^2 A}{d x^2}\right)_{x=r \sqrt{2}} & =\frac{-16 \cdot r \sqrt{2} \cdot r^2+4 \cdot(r \sqrt{2})^3+\left[2 r^2-(r \sqrt{2})^2\right] \cdot(-2 \cdot r \sqrt{2})}{2 \cdot\left(4 r^2-2 r^2\right)^{3 / 2}} \quad[\because x=r \sqrt{2}] \\ & =\frac{-16 \sqrt{2} \cdot r^3+8 \sqrt{2} r^3}{2\left(2 r^2\right)^{3 / 2}}=\frac{8 \sqrt{2} r^2[r-2 r]}{4 r^3} \\ & =\frac{-8 \sqrt{2} r^3}{4 r^3}=-2 \sqrt{2}<0 \end{aligned}$$
For $x=r \sqrt{2}$, the area of triangle is maximum.
For $x=r \sqrt{2}\quad, y=\sqrt{4 r^2-(r \sqrt{2})^2}=\sqrt{2 r^2}=r \sqrt{2}$
Since, $\quad x=r \sqrt{2}=y$
Hence, the triangle is isosceles.
A metal box with a square base and vertical sides is to contain $1024 \mathrm{~cm}^3$. If the material for the top and bottom costs ₹ $5 \mathrm{per} \mathrm{cm}^2$ and the material for the sides costs ₹ 2.50 per $\mathrm{cm}^2$. Then, find the least cost of the box.
Since, volume of the box $=1024 \mathrm{~cm}^3$
Let length of the side of square base be $x \mathrm{~cm}$ and height of the box be $y \mathrm{~cm}$.
$\therefore \quad$ Volume of the box $(V)=x^2 \cdot y=1024$
Since, $\quad x^2 y=1024 \Rightarrow y=\frac{1024}{x^2}$
$$\begin{aligned} &\text { Let } C \text { denotes the cost of the box. }\\ \therefore\quad &C=2 x^2 \times 5+4 x y \times 2.50 \end{aligned}$$
$$\begin{aligned} & =10 x^2+10 x y=10 x(x+y) \\ & =10 x\left(x+\frac{1024}{x^2}\right) \\ & =\frac{10 x}{x^2}\left(x^3+1024\right) \\ \Rightarrow\quad C & =10 x^2+\frac{10240}{x}\quad\text{.... (i)} \end{aligned}$$
$$\begin{aligned} &\text { On differentiating both sides w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d C}{d x} & =20 x+10240(-x)^{-2} \\ & =20 x-\frac{10240}{x^2}\quad\text{.... (ii)} \end{aligned} \end{aligned}$$
$$\begin{array}{lrl} \text { Now, } & \frac{d C}{d x} & =0 \\ \Rightarrow & 20 x & =\frac{10240}{x^2} \\ \Rightarrow & 20 x^3 & =10240 \\ \Rightarrow & x^3 & =512=8^3 \Rightarrow x=8 \end{array}$$
$$\begin{aligned} &\text { Again, differentiating Eq. (ii) w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d^2 C}{d x^2} & =20-10240(-2) \cdot \frac{1}{x^3} \\ & =20+\frac{20480}{x^3}>0 \\ \therefore \quad\left(\frac{d^2 C}{d x^2}\right)_{x=8} & =20+\frac{20480}{512}=60>0 \end{aligned} \end{aligned}$$
For $x=8$ cost is minimum and the corresponding least cost of the box,
$$\begin{aligned} C(8) & =10 \cdot 8^2+\frac{10240}{8} \\ & =640+1280=1920 \end{aligned}$$
$$\therefore$$ Least cost ₹ $=1920$The sum of surface areas of a rectangular parallelopiped with sides $x$, $2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if $x$ is equal to three times the radius of the sphere. Also, find the minimum value of the sum of their volumes.
We have given that, the sum of the surface areas of a rectangular parallelopiped with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is constant.
Let $S$ be the sum of both the surface area.
$\therefore \quad S=2\left(x \cdot 2 x+2 x \cdot \frac{x}{3}+\frac{x}{3} \cdot x\right)+4 \pi r^2=k$
$$\begin{aligned} k & =2\left[2 x^2+\frac{2 x^2}{3}+\frac{x^2}{3}\right]+4 \pi r^2 \\ & =2\left[3 x^2\right]+4 \pi r^2=6 x^2+4 \pi r^2 \end{aligned}$$
$$\begin{array}{lr} \Rightarrow & 4 \pi r^2=k-6 x^2 \\ \Rightarrow & r^2=\frac{k-6 x^2}{4 \pi} \\ \Rightarrow & r=\sqrt{\frac{k-6 x^2}{4 \pi}}\quad\text{.... (i)} \end{array}$$
Let V denotes the volume of both the parallelopiped and the sphere.
Then,
$$\begin{aligned} V & =2 x \cdot x \cdot \frac{x}{3}+\frac{4}{3} \pi r^3=\frac{2}{3} x^3+\frac{4}{3} \pi r^3 \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi\left(\frac{k-6 x^2}{4 \pi}\right)^{3 / 2} \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi \cdot \frac{1}{8 \pi^{3 / 2}}\left(k-6 x^2\right)^{3 / 2} \\ & =\frac{2}{3} x^3+\frac{1}{6 \sqrt{\pi}}\left(k-6 x^2\right)^{3 / 2}\quad\text{.... (ii)} \end{aligned}$$
On differentiating both sides w.r.t. $x$, we get
$$\begin{aligned} \frac{d V}{d x} & =\frac{2}{3} \cdot 3 x^2+\frac{1}{6 \sqrt{\pi}} \cdot \frac{3}{2}\left(k-6 x^2\right)^{1 / 2} \cdot(-12 x) \\ & =2 x^2-\frac{12 x}{4 \sqrt{\pi}} \sqrt{k-6 x^2} \\ & =2 x^2-\frac{3 x}{\sqrt{\pi}}\left(k-6 x^2\right)^{1 / 2}\quad\text{.... (iii)} \end{aligned}$$
$$\begin{array}{ll} \because & \frac{d V}{d x}=0 \\ \Rightarrow & 2 x^2=\frac{3 x}{\sqrt{\pi}}\left(k-6 x^2\right)^{1 / 2} \end{array}$$
$$\begin{aligned} \Rightarrow \quad & 4 x^4 =\frac{9 x^2}{\pi}\left(k-6 x^2\right) \\ \Rightarrow \quad & 4 \pi x^4 =9 k x^2-54 x^4 \\ \Rightarrow \quad & 4 \pi x^4+54 x^4 =9 k x^2 \\ \Rightarrow \quad & x^4[4 \pi+54] =9 \cdot k \cdot x^2 \\ \Rightarrow \quad& x^2 =\frac{9 k}{4 \pi+54} \\ \Rightarrow \quad & x =3 \cdot \sqrt{\frac{k}{4 \pi+54}}\quad\text{.... (iv)} \end{aligned}$$
$$\begin{aligned} &\text { Again, differentiating Eq. (iii) w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d^2 V}{d x^2} & =4 x-\frac{3}{\sqrt{\pi}}\left[x \cdot \frac{1}{2}\left(k-6 x^2\right)^{-1 / 2} \cdot(-12 x)+\left(k-6 x^2\right)^{1 / 2} \cdot 1\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[-6 x^2 \cdot\left(k-6 x^2\right)^{-1 / 2}+\left(k-6 x^2\right)^{1 / 2}\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[\frac{-6 x^2+k-6 x^2}{\sqrt{k-6 x^2}}\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[\frac{k-12 x^2}{\sqrt{k-6 x^2}}\right] \end{aligned} \end{aligned}$$
Now, $\left(\frac{d^2 V}{d x^2}\right)_{x=3 \cdot \sqrt{\frac{k}{4 \pi+54}}}=4 \cdot 3 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{k-12 \cdot 9 \cdot \frac{k}{4 \pi+54}}{\sqrt{k-\frac{6 \cdot 9 \cdot k}{4 \pi+54}}}\right]$
$$\begin{aligned} & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{k-\frac{108 k}{4 \pi+54}}{\sqrt{k-\frac{54 k}{4 \pi+54}}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{4 k \pi+54 k-108 k / 4 \pi+54}{\sqrt{4 k \pi+54 k-54 k / 4 \pi+54}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{4 k \pi-54 k}{\sqrt{4 k \pi} \sqrt{4 \pi+54}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{6}{\sqrt{\pi}}\left[\frac{k(2 \pi-27)}{\sqrt{k} \sqrt{16 \pi^2+216 \pi}}\right] \end{aligned}$$
For $x=3 \sqrt{\frac{k}{4 \pi+54}}$, the sum of volumes is minimum.
For $x=3 \sqrt{\frac{k}{4 \pi+54}}$, then $\quad r=\sqrt{\frac{k-6 x^2}{4 \pi}}\quad\text{[using Eq. (i)]}$
$$\begin{aligned} & =\frac{1}{2 \sqrt{\pi}} \sqrt{k-6 \cdot \frac{9 k}{4 \pi+54}} \\ & =\frac{1}{2 \sqrt{\pi}} \cdot \sqrt{\frac{4 k \pi+54 k-54 k}{4 \pi+54}} \\ & =\frac{1}{2 \sqrt{\pi}} \cdot \sqrt{\frac{4 k \pi}{4 \pi+54}}=\frac{\sqrt{k}}{\sqrt{4 \pi+54}}=\frac{1}{3} x \end{aligned}$$
$$ \begin{aligned} & \Rightarrow \quad x=3 r \quad\text{Hence proved.}\\ & \therefore \text { Minimum sum of volume, } \end{aligned}$$
$\therefore$ Minimum sum of volume,
$$\begin{aligned} \left.V_{\left(x=3 \cdot \sqrt{\frac{k}{4 \pi+54}}\right.}\right) & =\frac{2}{3} x^3+\frac{4}{3} \pi r^3=\frac{2}{3} x^3+\frac{4}{3} \pi \cdot\left(\frac{1}{3} x\right)^3 \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi \cdot \frac{x^3}{27}=\frac{2}{3} x^3\left(1+\frac{2 \pi}{27}\right) \end{aligned}$$
If the sides of an equilateral triangle are increasing at the rate of 2 $\mathrm{cm} / \mathrm{s}$ then the rate at which the area increases, when side is 10 cm , is
A ladder, 5 m long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides downwards at the rate of $10 \mathrm{~cm} / \mathrm{s}$, then the rate at which the angle between the floor and the ladder is decreasing when lower end of ladder is 2 m from the wall is