ExamGOAL
Books
58
MCQ (Single Correct Answer)

The functin $f(x)=x^x$ has a stationary point at

A
$x=\mathrm{e}$
B
$x=\frac{1}{\mathrm{e}}$
C
$x=1$
D
$x=\sqrt{\mathrm{e}}$
59
MCQ (Single Correct Answer)

The maximum value of $\left(\frac{1}{x}\right)^x$ is

A
$e$
B
$e^e$
C
$e^{1 / e}$
D
$\left(\frac{1}{e}\right)^{1 / e}$
60

The curves $y=4 x^2+2 x-8$ and $y=x^3-x+13$ touch each other at the point ............. .

Explanation

The curves $y=4 x^2+2 x-8$ and $y=x^3-x+13$ touch each other at the point $(3,34)$. Given, equation of curves are $y=4 x^2+2 x-8$ and $y=x^3-x+13$

$$\begin{array}{ll} \therefore & \frac{d y}{d x}=8 x+2 \\ \text { and } & \frac{d y}{d x}=3 x^2-1 \end{array}$$

So, the slope of both curves should be same

$\therefore \quad 8 x+2=3 x^2-1$

$$\begin{array}{lr} \Rightarrow & 3 x^2-8 x-3=0 \\ \Rightarrow & 3 x^2-9 x+x-3=0 \\ \Rightarrow & 3 x(x-3)+1(x-3)=0 \\ \Rightarrow & (3 x+1)(x-3)=0 \\ \therefore & x=-\frac{1}{3} \text { and } x=3, \end{array}$$

For $x=-\frac{1}{3}$, $$y=4 \cdot\left(-\frac{1}{3}\right)^2+2 \cdot\left(\frac{-1}{3}\right)-8$$

$$\begin{aligned} & =\frac{4}{9}-\frac{2}{3}-8=\frac{4-6-72}{9} \\ & =-\frac{74}{9} \end{aligned}$$

and for $x=3, y=4 \cdot(3)^2+2 \cdot(3)-8$

$$=36+6-8=34$$

So, the required points are $(3,34)$ and $\left(-\frac{1}{3}, \frac{-74}{9}\right)$.

61

The equation of normal to the curve $y=\tan x$ at $(0,0)$ is .............. .

Explanation

The equation of normal to the curve $y=\tan x$ at $(0,0)$ is $x+y=0$.

$\because\quad y=\tan x \Rightarrow \frac{d y}{d x}=\sec ^2 x$

$\Rightarrow \quad\left(\frac{d y}{d x}\right)_{(0,0)}=\sec ^2 0=1$ and $-\frac{1}{\left(\frac{d y}{d x}\right)}=-\frac{1}{1}$

$$\begin{aligned} &\therefore \text { Equation of normal to the curve } y=\tan x \text { at }(0,0) \text { is }\\ &\begin{array}{ll} & y-0=-1(x-0) \\ \Rightarrow & y+x=0 \end{array} \end{aligned}$$

62

The values of $a$ for which the function $f(x)=\sin x-a x+b$ increases on $R$ are ............ .

Explanation

The values of $a$ for which the function $f(x)=\sin x-a x+b$ increases on $R$ are $(-\infty,-1)$.

$$\begin{aligned} \because\quad f^{\prime}(x) & =\cos x-a \\ \text{and}\quad f^{\prime}(x) & >0 \Rightarrow \cos x>a \end{aligned}$$

$$\begin{aligned} &\text { Since, } \quad\cos x \in[-1,1]\\ &\Rightarrow \quad a<-1 \Rightarrow a \in(-\infty,-1) \end{aligned}$$