ExamGOAL
Books
10
Subjective

The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side.

Explanation

Let the side of a cube be $x$ unit.

$$\therefore \quad \text { Volume of cube }(V)=x^3$$

On differentiating both side w.r.t. $t$, we get

$$\frac{d V}{d t}=3 x^2 \frac{d x}{d t}=k\quad$$ [constant]

$\Rightarrow \quad \frac{d x}{d t}=\frac{k}{3 x^2}\quad\text{.... (i)}$

Also, surface area of cube, $$S=6 x^2$$

On differentiating w.r.t. $t$, we get

$$\begin{array}{ll} & \frac{d S}{d t}=12 x \cdot \frac{d x}{d t} \\ \Rightarrow & \frac{d S}{d t}=12 x \cdot \frac{k}{3 x^2} \quad\text{[using Eq. (i)]}\\ \Rightarrow & \frac{d S}{d t}=\frac{12 k}{3 x}=4\left(\frac{k}{x}\right) \\ \Rightarrow & \frac{d S}{d t} \propto \frac{1}{x} \end{array}$$

Hence, the surface area of the cube varies inversely as the length of the side.

11
Subjective

If $x$ and $y$ are the sides of two squares such that $y=x-x^2$, then find the rate of change of the area of second square with respect to the area of first square.

Explanation

Since, $x$ and $y$ are the sides of two squares such that $y=x-x^2$.

$\therefore \quad$ Area of the first square $\left(A_1\right)=x^2$

and area of the second square $\left(A_2\right)=y^2=\left(x-x^2\right)^2$

$$\therefore \quad \frac{d A_2}{d t}=\frac{d}{d t}\left(x-x^2\right)^2=2\left(x-x^2\right)\left(\frac{d x}{d t}-2 x \cdot \frac{d x}{d t}\right)$$

$=\frac{d x}{d t}(1-2 x) 2\left(x-x^2\right)$

and $$\frac{d A_1}{d t}=\frac{d}{d t} x^2=2x \cdot \frac{d x}{d t}$$

$\therefore\quad \frac{d A_2}{d A_1}=\frac{d A_2 / d t}{d A_1 / d t}=\frac{\frac{d x}{d t} \cdot(1-2 x)\left(2 x-2 x^2\right)}{2 x \cdot \frac{d x}{d t}}$

$$\begin{aligned} & =\frac{(1-2 x) 2 x(1-x)}{2 x} \\ & =(1-2 x)(1-x) \\ & =1-x-2 x+2 x^2 \\ & =2 x^2-3 x+1 \end{aligned}$$

12
Subjective

Find the condition that curves $2 x=y^2$ and $2 x y=k$ intersect orthogonally.

Explanation

$$\begin{array}{rlrl} & \text { Given, equation of curves are } & 2 x =y^2 \quad\text{.... (i)}\\ & \text { and } & 2 x y =k \quad\text{.... (ii)}\\ & \Rightarrow & y =\frac{k}{2 x}\quad\text{[from Eq. (ii)]} \end{array}$$

$$\begin{array}{lrl} \text { From Eq. (i), } & 2 x & =\left(\frac{k}{2 x}\right)^2 \\ \Rightarrow & 8 x^3 & =k^2 \\ \Rightarrow & x^3 & =\frac{1}{8} k^2 \\ \Rightarrow & x & =\frac{1}{2} k^{2 / 3} \\ \therefore & y & =\frac{k}{2 x}=\frac{k}{2 \cdot \frac{1}{2} k^{2 / 3}}=k^{1 / 3} \end{array}$$

Thus, we get point of intersection of curves which is $\left(\frac{1}{2} k^{2 / 3}, k^{1 / 3}\right)$.

From Eqs. (i) and (ii),

$$2=2 y \frac{d y}{d x}$$

and $$2\left[x \cdot \frac{d y}{d x}+y \cdot 1\right]=0$$

$$\begin{array}{ll} \Rightarrow & \frac{d y}{d x}=\frac{1}{y} \\ \text { and } & \left(\frac{d y}{d x}\right)=\frac{-2 y}{2 x}=-\frac{y}{x} \end{array}$$

$\Rightarrow\quad\left(\frac{d y}{d x}\right)_{\left(\frac{1}{2} k^{2 / 3}, k^{1 / 3}\right)}=\frac{1}{k^{1 / 3}}\quad \text { [say } m_1 \text { ] }$

$\text{and}\quad\left(\frac{d y}{d x}\right)_{\left(\frac{1}{2} k^{2 / 3}, k^{1 / 3}\right)}=\frac{-k^{1 / 3}}{\frac{1}{2} k^{2 / 3}}=-2 k^{-1 / 3}\quad \text { [say } m_2 \text { ] }$

Since, the curves intersect orthogonally.

$$\begin{array}{lrl} \text { i.e., } & m_1 \cdot m_2 & =-1 \\ \Rightarrow & \frac{1}{k^{1 / 3}} \cdot\left(-2 k^{-1 / 3}\right) & =-1 \end{array}$$

$$\begin{array}{lr} \Rightarrow & -2 k^{-2 / 3}=-1 \\ \Rightarrow & \frac{2}{k^{2 / 3}}=1 \\ \Rightarrow & k^{2 / 3}=2 \\ \therefore & k^2=8 \end{array}$$

which is the required condition.

13
Subjective

Prove that the curves $x y=4$ and $x^2+y^2=8$ touch each other.

Explanation

$$\begin{array}{r} \text{Given equation of curves are}\quad x y=4 \quad\text{.... (i)}\\ \text{and}\quad x^2+y^2=8 \quad\text{.... (ii)}\\ \Rightarrow\quad x \cdot \frac{d y}{d x}+y=0 \end{array}$$

and $$2 x+2 y \frac{d y}{d x}=0$$

$$\begin{array}{ll} \Rightarrow & \frac{d y}{d x}=\frac{-y}{x} \\ \text { and } & \frac{d y}{d x}=\frac{-2 x}{2 y} \\ \Rightarrow & \frac{d y}{d x}=\frac{-y}{x}=m_1 \quad\text{[say]}\\ \text { and } & \frac{d y}{d x}=\frac{-x}{y}=m_2\quad\text{[say]} \end{array}$$

$$\begin{aligned} &\text { Since, both the curves should have same slope. }\\ &\begin{array}{ll} \therefore & \frac{-y}{x}=\frac{-x}{y} \Rightarrow-y^2=-x^2 \\ \Rightarrow & x^2=y^2\quad\text{.... (iii)} \end{array} \end{aligned}$$

$$\begin{aligned} &\text { Using the value of } x^2 \text { in Eq. (ii), we get }\\ &\begin{aligned} y^2+y^2 & =8 \\ \Rightarrow\quad y^2 & =4 \Rightarrow y= \pm 2 \end{aligned} \end{aligned}$$

For $y=2, x=\frac{4}{2}=2$ and for $y=-2, x=\frac{4}{-2}=-2$

Thus, the required points of intersection are $(2,2)$ and $(-2,-2)$.

For $(2,2)$, $$m_1=\frac{-y}{x}=\frac{-2}{2}=-1$$

$$\begin{array}{ll} \text { and } & m_2=\frac{-x}{y}=\frac{-2}{2}=-1 \\ \because & m_1=m_2 \end{array}$$

$$\begin{aligned} &\begin{aligned} \text { For }(-2,-2) \text {, }\quad & m_1=\frac{-y}{x}=\frac{-(-2)}{-2}=-1 \\ \text{and}\quad & m_2=\frac{-x}{y}=\frac{-(-2)}{-2}=-1 \end{aligned} \end{aligned}$$

Thus, for both the intersection points, we see that slope of both the curves are same. Hence, the curves touch each other.

14
Subjective

Find the coordinates of the point on the curve $\sqrt{x}+\sqrt{y}=4$ at which tangent is equally inclined to the axes.

Explanation

$$\begin{array}{r} \text{We have,}\quad \sqrt{x}+\sqrt{y}=4 \quad\text{.... (i)}\\ \Rightarrow\quad x^{1 / 2}+y^{1 / 2}=4 \end{array}$$

$$\begin{aligned} \Rightarrow \quad \frac{1}{2} \cdot \frac{1}{x^{1 / 2}}+\frac{1}{2} \cdot \frac{1}{y^{1 / 2}} \cdot \frac{d y}{d x} & =0 \\ \therefore \quad \frac{d y}{d x} & =-\frac{1}{2} \cdot x^{-1 / 2} \quad 2 \cdot y^{1 / 2} \\ & =-\sqrt{\frac{y}{x}} \end{aligned}$$

$$\begin{aligned} &\text { Since, tangent is equally inclined to the axes. }\\ &\begin{array}{ll} \therefore & \frac{d y}{d x}= \pm 1 \\ \Rightarrow & -\sqrt{\frac{y}{x}}= \pm 1 \\ \Rightarrow & \frac{y}{x}=1 \Rightarrow y=x \end{array} \end{aligned}$$

From Eq. (i),

$$\begin{aligned} \sqrt{y}+\sqrt{y} & =4 \\ 2 \sqrt{y} & =4 \end{aligned}$$

$$\begin{array}{lr} \Rightarrow & 2 \sqrt{ } y=4 \\ \Rightarrow & 4 y=16 \end{array}$$

$$\therefore \quad y=4 \text { and } x=4$$

When $\mathrm{y}=4$, then $x=4$

So, the required coordinates are $(4,4)$.