I the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?
$$\begin{aligned} &\text { Let length of one edge of cube be } x \text { units and radius of sphere be } r \text { units. }\\ &\begin{aligned} & \therefore \quad \text { Surface area of cube }=6 x^2 \\ & \text { and } \quad \text { surface area of sphere }=4 \pi r^2 \end{aligned} \end{aligned}$$
Also, $$6 x^2+4 \pi r^2=k\quad$$ [constant, given]
$$\begin{array}{ll} \Rightarrow & 6 x^2=k-4 \pi r^2 \\ \Rightarrow & x^2=\frac{k-4 \pi r^2}{6} \\ \Rightarrow & x=\left[\frac{k-4 \pi r^2}{6}\right]^{1 / 2}\quad\text{.... (i)} \end{array}$$
Now, volume of cube $=x^3$
and volume of sphere $=\frac{4}{3} \pi r^3$
Let sum of volume of the cube and volume of the sphere be given by
$$S=x^3+\frac{4}{3} \pi r^3=\left[\frac{k-4 \pi r^2}{6}\right]^{3 / 2}+\frac{4}{3} \pi r^3$$
On differentiating both sides w.r.t. $r$, we get
$$\begin{aligned} \frac{d S}{d r} & =\frac{3}{2}\left[\frac{k-4 \pi r^2}{6}\right]^{1 / 2} \cdot\left(\frac{-8 \pi r}{6}\right)+\frac{12}{3} \pi r^2 \\ & =-2 \pi r\left[\frac{k-4 \pi r^2}{6}\right]^{1 / 2}+4 \pi r^2 \quad\text{.... (ii)}\\ & =-2 \pi r\left[\left\{\frac{k-4 \pi r^2}{6}\right\}^{1 / 2}-2 r\right] \end{aligned}$$
$$\begin{aligned} &\begin{aligned} \text { Now, }\quad\frac{d S}{d r} & =0 \\ \Rightarrow\quad r & =0 \text { or } 2 r=\left(\frac{k-4 \pi r^2}{6}\right)^{1 / 2} \end{aligned} \end{aligned}$$
$$\begin{array}{ll} \Rightarrow & 4 r^2=\frac{k-4 \pi r^2}{6} \Rightarrow 24 r^2=k-4 \pi r^2 \\ \Rightarrow & 24 r^2+4 \pi r^2=k \Rightarrow r^2[24+4 \pi]=k \\ \therefore & r=0 \text { or } \quad r=\sqrt{\frac{k}{24+4 \pi}}=\frac{1}{2} \sqrt{\frac{k}{6+\pi}} \end{array}$$
$\therefore \quad r=0$ or $r=\sqrt{\frac{k}{24+4 \pi}}=\frac{1}{2} \sqrt{\frac{k}{6+\pi}}$
$$\begin{aligned} &\begin{aligned} \text { We know that, }\quad & r \neq 0 \\ \therefore\quad & r=\frac{1}{2} \sqrt{\frac{k}{6+\pi}} \end{aligned} \end{aligned}$$
$$\begin{aligned} &\text { Again, differentiating w.r.t. } r \text { in Eq. (ii), we get }\\ &\frac{d^2 S}{d r^2}=\frac{d}{d r}\left[-2 \pi\left\{\left(\frac{k-4 \pi r^2}{6}\right)^{1 / 2}+4 \pi r^2\right\}\right] \end{aligned}$$
$$\begin{aligned} & =-2 \pi\left[r \cdot \frac{1}{2}\left(\frac{k-4 \pi r^2}{6}\right)^{-1 / 2} \cdot\left(\frac{-8 \pi r}{6}\right)+\left(\frac{k-4 \pi r^2}{6}\right)^{1 / 2} \cdot 1\right]+4 \pi \cdot 2 r \\ & =-2 \pi\left[r \cdot \frac{1}{2 \sqrt{\frac{k-4 \pi r^2}{6}}} \cdot\left(\frac{-8 \pi r}{6}\right)+\sqrt{\frac{k-4 \pi r^2}{6}}\right]+8 \pi r \end{aligned}$$
$$\begin{aligned} & =-2 \pi\left[\frac{-8 \pi r^2+12\left(k-\frac{4 \pi r^2}{6}\right)}{12 \sqrt{\frac{k-4 \pi r^2}{6}}}\right]+8 \pi r \\ & =-2 \pi\left[\frac{-48 \pi r^2+72 k-48 \pi r^2}{72 \sqrt{\frac{k-4 \pi r^2}{6}}}\right]+8 \pi r=-2 \pi\left[\frac{-96 \pi r^2+72 k}{72 \sqrt{\frac{k-4 \pi r^2}{6}}}\right]+8 \pi r>0 \end{aligned}$$
For $r=\frac{1}{2} \sqrt{\frac{k}{6+\pi}}$, then the sum of their volume is minimum.
For $r=\frac{1}{2} \sqrt{\frac{k}{6+\pi}}\quad$, $$x=\left[\frac{k-4 \pi \cdot \frac{1}{4} \frac{k}{(6+\pi)}}{6}\right]^{1 / 2}$$
$=\left[\frac{(6+\pi) k-\pi k}{6(6+\pi)}\right]^{1 / 2}=\left[\frac{k}{6+\pi}\right]^{1 / 2}=2 r$
Since, the sum of their volume is minimum when $x=2 r$.
Hence, the ratio of an edge of cube to the diameter of the sphere is $1: 1$.
If $A B$ is a diameter of a circle and $C$ is any point on the circle, then show that the area of $\triangle A B C$ is maximum, when it is isosceles.
We have, $$A B=2 r$$
and $\angle A C B=90^{\circ} \quad$ [since, angle in the semi-circle is always $90^{\circ}$ ]
Let $A C=x$ and $B C=y$
$$\begin{array}{ll} \therefore & (2 r)^2=x^2+y^2 \\ \Rightarrow & y^2=4 r^2-x^2 \\ \Rightarrow & y=\sqrt{4 r^2-x^2}\quad\text{.... (i)} \end{array}$$
$$\begin{aligned} \text { Now, } \quad \quad \text { area of } \triangle A B C, A & =\frac{1}{2} \times x \times y \\ & =\frac{1}{2} \times x \times\left(4 r^2-x^2\right)^{1 / 2}\quad\text{[using Eq. (i)]} \end{aligned}$$
$$\begin{aligned} &\text { Now, differentiating both sides w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d A}{d x} & =\frac{1}{2}\left[x \cdot \frac{1}{2}\left(4 r^2-x^2\right)^{-1 / 2} \cdot(0-2 x)+\left(4 r^2-x^2\right)^{1 / 2} \cdot 1\right] \\ & =\frac{1}{2}\left[\frac{-2 x^2}{2 \sqrt{4 r^2-x^2}}+\left(4 r^2-x^2\right)^{1 / 2}\right] \end{aligned} \end{aligned}$$
$$\begin{aligned} & =\frac{1}{2}\left[\frac{-x^2}{\sqrt{4 r^2-x^2}}+\sqrt{4 r^2-x^2}\right] \\ & =\frac{1}{2}\left[\frac{-x^2+4 r^2-x^2}{\sqrt{4 r^2-x^2}}\right]=\frac{1}{2}\left[\frac{-2 x^2+4 r^2}{\sqrt{4 r^2-x^2}}\right] \end{aligned}$$
$$\begin{array}{lrl} \Rightarrow & \frac{d A}{d x} & =\left[\frac{\left(-x^2+2 r^2\right)}{\sqrt{4 r^2-x^2}}\right] \\ \text { Now, } & \frac{d A}{d x} & =0 \\ \Rightarrow & -x^2+2 r^2 & =0 \\ \Rightarrow & r^2 & =\frac{1}{2} x^2 \\ \Rightarrow & r & =\frac{1}{\sqrt{2}} x \\ \therefore & x & =r \sqrt{2} \end{array}$$
Again, differentiating both sides w.r.t. x, we get
$$\begin{aligned} \frac{d^2 A}{d x^2} & =\frac{\sqrt{4 r^2-x^2} \cdot(-2 x)+\left(2 r^2-x^2\right) \cdot \frac{1}{2}\left(4 r^2-x^2\right)^{-1 / 2}(-2 x)}{\left(\sqrt{4 r^2-x^2}\right)^2} \\ & =\frac{-2 x\left[\sqrt{4 r^2-x^2}+\left(2 r^2-x^2\right) \cdot \frac{1}{2 \sqrt{4 r^2-x^2}}\right]}{\left(\sqrt{4 r^2-x^2}\right)^2} \\ & =\frac{-4 x \cdot\left(\sqrt{4 r^2-x^2}\right)^2+\left(2 r^2-x^2\right)(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \\ & =\frac{-4 x\left(4 r^2-x^2\right)+\left(2 r^2-x^2\right) \cdot(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \\ & =\frac{-16 x r^2+4 x^3+\left(2 r^2-x^2\right)(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \end{aligned}$$
$$\begin{aligned} \left(\frac{d^2 A}{d x^2}\right)_{x=r \sqrt{2}} & =\frac{-16 \cdot r \sqrt{2} \cdot r^2+4 \cdot(r \sqrt{2})^3+\left[2 r^2-(r \sqrt{2})^2\right] \cdot(-2 \cdot r \sqrt{2})}{2 \cdot\left(4 r^2-2 r^2\right)^{3 / 2}} \quad[\because x=r \sqrt{2}] \\ & =\frac{-16 \sqrt{2} \cdot r^3+8 \sqrt{2} r^3}{2\left(2 r^2\right)^{3 / 2}}=\frac{8 \sqrt{2} r^2[r-2 r]}{4 r^3} \\ & =\frac{-8 \sqrt{2} r^3}{4 r^3}=-2 \sqrt{2}<0 \end{aligned}$$
For $x=r \sqrt{2}$, the area of triangle is maximum.
For $x=r \sqrt{2}\quad, y=\sqrt{4 r^2-(r \sqrt{2})^2}=\sqrt{2 r^2}=r \sqrt{2}$
Since, $\quad x=r \sqrt{2}=y$
Hence, the triangle is isosceles.
A metal box with a square base and vertical sides is to contain $1024 \mathrm{~cm}^3$. If the material for the top and bottom costs ₹ $5 \mathrm{per} \mathrm{cm}^2$ and the material for the sides costs ₹ 2.50 per $\mathrm{cm}^2$. Then, find the least cost of the box.
Since, volume of the box $=1024 \mathrm{~cm}^3$
Let length of the side of square base be $x \mathrm{~cm}$ and height of the box be $y \mathrm{~cm}$.
$\therefore \quad$ Volume of the box $(V)=x^2 \cdot y=1024$
Since, $\quad x^2 y=1024 \Rightarrow y=\frac{1024}{x^2}$
$$\begin{aligned} &\text { Let } C \text { denotes the cost of the box. }\\ \therefore\quad &C=2 x^2 \times 5+4 x y \times 2.50 \end{aligned}$$
$$\begin{aligned} & =10 x^2+10 x y=10 x(x+y) \\ & =10 x\left(x+\frac{1024}{x^2}\right) \\ & =\frac{10 x}{x^2}\left(x^3+1024\right) \\ \Rightarrow\quad C & =10 x^2+\frac{10240}{x}\quad\text{.... (i)} \end{aligned}$$
$$\begin{aligned} &\text { On differentiating both sides w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d C}{d x} & =20 x+10240(-x)^{-2} \\ & =20 x-\frac{10240}{x^2}\quad\text{.... (ii)} \end{aligned} \end{aligned}$$
$$\begin{array}{lrl} \text { Now, } & \frac{d C}{d x} & =0 \\ \Rightarrow & 20 x & =\frac{10240}{x^2} \\ \Rightarrow & 20 x^3 & =10240 \\ \Rightarrow & x^3 & =512=8^3 \Rightarrow x=8 \end{array}$$
$$\begin{aligned} &\text { Again, differentiating Eq. (ii) w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d^2 C}{d x^2} & =20-10240(-2) \cdot \frac{1}{x^3} \\ & =20+\frac{20480}{x^3}>0 \\ \therefore \quad\left(\frac{d^2 C}{d x^2}\right)_{x=8} & =20+\frac{20480}{512}=60>0 \end{aligned} \end{aligned}$$
For $x=8$ cost is minimum and the corresponding least cost of the box,
$$\begin{aligned} C(8) & =10 \cdot 8^2+\frac{10240}{8} \\ & =640+1280=1920 \end{aligned}$$
$$\therefore$$ Least cost ₹ $=1920$The sum of surface areas of a rectangular parallelopiped with sides $x$, $2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if $x$ is equal to three times the radius of the sphere. Also, find the minimum value of the sum of their volumes.
We have given that, the sum of the surface areas of a rectangular parallelopiped with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is constant.
Let $S$ be the sum of both the surface area.
$\therefore \quad S=2\left(x \cdot 2 x+2 x \cdot \frac{x}{3}+\frac{x}{3} \cdot x\right)+4 \pi r^2=k$
$$\begin{aligned} k & =2\left[2 x^2+\frac{2 x^2}{3}+\frac{x^2}{3}\right]+4 \pi r^2 \\ & =2\left[3 x^2\right]+4 \pi r^2=6 x^2+4 \pi r^2 \end{aligned}$$
$$\begin{array}{lr} \Rightarrow & 4 \pi r^2=k-6 x^2 \\ \Rightarrow & r^2=\frac{k-6 x^2}{4 \pi} \\ \Rightarrow & r=\sqrt{\frac{k-6 x^2}{4 \pi}}\quad\text{.... (i)} \end{array}$$
Let V denotes the volume of both the parallelopiped and the sphere.
Then,
$$\begin{aligned} V & =2 x \cdot x \cdot \frac{x}{3}+\frac{4}{3} \pi r^3=\frac{2}{3} x^3+\frac{4}{3} \pi r^3 \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi\left(\frac{k-6 x^2}{4 \pi}\right)^{3 / 2} \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi \cdot \frac{1}{8 \pi^{3 / 2}}\left(k-6 x^2\right)^{3 / 2} \\ & =\frac{2}{3} x^3+\frac{1}{6 \sqrt{\pi}}\left(k-6 x^2\right)^{3 / 2}\quad\text{.... (ii)} \end{aligned}$$
On differentiating both sides w.r.t. $x$, we get
$$\begin{aligned} \frac{d V}{d x} & =\frac{2}{3} \cdot 3 x^2+\frac{1}{6 \sqrt{\pi}} \cdot \frac{3}{2}\left(k-6 x^2\right)^{1 / 2} \cdot(-12 x) \\ & =2 x^2-\frac{12 x}{4 \sqrt{\pi}} \sqrt{k-6 x^2} \\ & =2 x^2-\frac{3 x}{\sqrt{\pi}}\left(k-6 x^2\right)^{1 / 2}\quad\text{.... (iii)} \end{aligned}$$
$$\begin{array}{ll} \because & \frac{d V}{d x}=0 \\ \Rightarrow & 2 x^2=\frac{3 x}{\sqrt{\pi}}\left(k-6 x^2\right)^{1 / 2} \end{array}$$
$$\begin{aligned} \Rightarrow \quad & 4 x^4 =\frac{9 x^2}{\pi}\left(k-6 x^2\right) \\ \Rightarrow \quad & 4 \pi x^4 =9 k x^2-54 x^4 \\ \Rightarrow \quad & 4 \pi x^4+54 x^4 =9 k x^2 \\ \Rightarrow \quad & x^4[4 \pi+54] =9 \cdot k \cdot x^2 \\ \Rightarrow \quad& x^2 =\frac{9 k}{4 \pi+54} \\ \Rightarrow \quad & x =3 \cdot \sqrt{\frac{k}{4 \pi+54}}\quad\text{.... (iv)} \end{aligned}$$
$$\begin{aligned} &\text { Again, differentiating Eq. (iii) w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d^2 V}{d x^2} & =4 x-\frac{3}{\sqrt{\pi}}\left[x \cdot \frac{1}{2}\left(k-6 x^2\right)^{-1 / 2} \cdot(-12 x)+\left(k-6 x^2\right)^{1 / 2} \cdot 1\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[-6 x^2 \cdot\left(k-6 x^2\right)^{-1 / 2}+\left(k-6 x^2\right)^{1 / 2}\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[\frac{-6 x^2+k-6 x^2}{\sqrt{k-6 x^2}}\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[\frac{k-12 x^2}{\sqrt{k-6 x^2}}\right] \end{aligned} \end{aligned}$$
Now, $\left(\frac{d^2 V}{d x^2}\right)_{x=3 \cdot \sqrt{\frac{k}{4 \pi+54}}}=4 \cdot 3 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{k-12 \cdot 9 \cdot \frac{k}{4 \pi+54}}{\sqrt{k-\frac{6 \cdot 9 \cdot k}{4 \pi+54}}}\right]$
$$\begin{aligned} & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{k-\frac{108 k}{4 \pi+54}}{\sqrt{k-\frac{54 k}{4 \pi+54}}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{4 k \pi+54 k-108 k / 4 \pi+54}{\sqrt{4 k \pi+54 k-54 k / 4 \pi+54}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{4 k \pi-54 k}{\sqrt{4 k \pi} \sqrt{4 \pi+54}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{6}{\sqrt{\pi}}\left[\frac{k(2 \pi-27)}{\sqrt{k} \sqrt{16 \pi^2+216 \pi}}\right] \end{aligned}$$
For $x=3 \sqrt{\frac{k}{4 \pi+54}}$, the sum of volumes is minimum.
For $x=3 \sqrt{\frac{k}{4 \pi+54}}$, then $\quad r=\sqrt{\frac{k-6 x^2}{4 \pi}}\quad\text{[using Eq. (i)]}$
$$\begin{aligned} & =\frac{1}{2 \sqrt{\pi}} \sqrt{k-6 \cdot \frac{9 k}{4 \pi+54}} \\ & =\frac{1}{2 \sqrt{\pi}} \cdot \sqrt{\frac{4 k \pi+54 k-54 k}{4 \pi+54}} \\ & =\frac{1}{2 \sqrt{\pi}} \cdot \sqrt{\frac{4 k \pi}{4 \pi+54}}=\frac{\sqrt{k}}{\sqrt{4 \pi+54}}=\frac{1}{3} x \end{aligned}$$
$$ \begin{aligned} & \Rightarrow \quad x=3 r \quad\text{Hence proved.}\\ & \therefore \text { Minimum sum of volume, } \end{aligned}$$
$\therefore$ Minimum sum of volume,
$$\begin{aligned} \left.V_{\left(x=3 \cdot \sqrt{\frac{k}{4 \pi+54}}\right.}\right) & =\frac{2}{3} x^3+\frac{4}{3} \pi r^3=\frac{2}{3} x^3+\frac{4}{3} \pi \cdot\left(\frac{1}{3} x\right)^3 \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi \cdot \frac{x^3}{27}=\frac{2}{3} x^3\left(1+\frac{2 \pi}{27}\right) \end{aligned}$$
If the sides of an equilateral triangle are increasing at the rate of 2 $\mathrm{cm} / \mathrm{s}$ then the rate at which the area increases, when side is 10 cm , is