ExamGOAL
Books
61
MCQ (Single Correct Answer)

Assertion (A) Actinoids form relatively less stable complexes as compared to lanthanoids.

Reason (R) Actinoids can utilise their $5 f$ orbitals alongwith 6d orbitals in bonding but lanthanoids do not use their 4 f orbital for bonding.

A
Both assertion and reason are true, and reason is the correct explanation of the assertion.
B
Both assertion and reason are true but reason is not the correct explanation of assertion.
C
Assertion is not true but reason is true.
D
Both assertion and reason are false.
62
MCQ (Single Correct Answer)

Assertion (A) Cu cannot liberate hydrogen from acids.

Reason (R) Because it has positive electrode potential.

A
Both assertion and reason are true, and reason is the correct explanation of the assertion.
B
Both assertion and reason are true but reason is not the correct explanation of assertion.
C
Assertion is not true but reason is true.
D
Both assertion and reason are false.
63
MCQ (Single Correct Answer)

Assertion (A) The highest oxidation state of osmium is +8 .

Reason (R) Osmium is a 5 d -block element.

A
Both assertion and reason are true, and reason is the correct explanation of the assertion.
B
Both assertion and reason are true but reason is not the correct explanation of assertion.
C
Assertion is not true but reason is true.
D
Both assertion and reason are false.
64
Subjective

Identify A to E and also explain the reaction involved.

Explanation

The substances from $A$ to $E$ are

$$A=\mathrm{Cu} ; B=\mathrm{Cu}\left(\mathrm{NO}_3\right)_2 ; C=\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_4\right]^{2+} ; D=\mathrm{CO}_2 ; E=\mathrm{CaCO}_3$$

(i) $\mathrm{CuCO}_3 \xrightarrow{\Delta} \mathrm{CuO}+\mathrm{CO}_2] \times 2$

(ii) $2 \mathrm{CuO}+\mathrm{CuS} \longrightarrow \underset{[A]}{3 \mathrm{Cu}}+\mathrm{SO}_2$

(iii) $\underset{[A]}{\mathrm{Cu}}+4 \mathrm{HNO}_3$ (conc.) $\longrightarrow \underset{[B]}{\mathrm{Cu}\left(\mathrm{NO}_3\right)_2}+2 \mathrm{NO}+2 \mathrm{H}_2 \mathrm{O}$

(iv) $\underset{[B]}{\mathrm{Cu}^{2+}}+\mathrm{NH}_3 \longrightarrow \underset{\substack{\text { [C] (Blue solution)}}}{\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_4\right]}$

(v) $$Ca{(OH)_2} + \mathop {C{O_2}}\limits_{[D]} \buildrel {} \over \longrightarrow \mathop {CaC{O_3}}\limits_{[E]\,(Milky)} + {H_2}O$$

(vi) $\mathrm{CaCO}_3+\mathrm{H}_2 \mathrm{O}+\mathrm{CO}_2 \longrightarrow \mathrm{Ca}\left(\mathrm{HCO}_3\right)_2$

65
Subjective

When a chromite ore $(A)$ is fused with sodium carbonate in free excess of air and the product is dissolved in water, a yellow solution of compound (B) is obtained. After treatment of this yellow solution with sulphuric acid, compound (C) can be crystallised from the solution. When compound $(C)$ is treated with KCl , orange crystals of compound (D) crystallise out. Identify A to D and also explain the reactions.

Explanation

$\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7$ is an orange compound. It is formed when $\mathrm{Na}_2 \mathrm{Cr}_2 \mathrm{O}_7$ reacts with KCl . In acidic medium, yellow coloured $\mathrm{CrO}_4^{2-}$ (chromate ion) changes into dichromate.

The given process is the preparation method of potassium dichromate from chromite ore.

$$A=\mathrm{FeCr}_2 \mathrm{O}_4 ; B=\mathrm{Na}_2 \mathrm{CrO}_4 ; C=\mathrm{Na}_2 \mathrm{Cr}_2 \mathrm{O}_7 ; D=\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7 .$$

(i) $$\mathop {4FeC{r_2}{O_4}}\limits_{[A]} + 8N{a_2}C{O_3} + 7{O_2}\buildrel {} \over \longrightarrow \mathop {8N{a_2}Cr{O_4}}\limits_{[B]} + 2F{e_2}{O_3} + 8C{O_2}$$

(ii) $2 \mathrm{Na}_2 \mathrm{CrO}_4+2 \mathrm{H}^{+} \longrightarrow \mathrm{Na}_2 \mathrm{Cr}_2 \mathrm{O}_7+2 \mathrm{Na}^{+}+\mathrm{H}_2 \mathrm{O}$

(iii) $$\mathop {N{a_2}C{r_2}{O_7}}\limits_{[C]} + 2KCl\buildrel {} \over \longrightarrow \mathop {{K_2}C{r_2}{O_7}}\limits_{[D]} + 2NaCl$$