ExamGOAL
Books
39
Subjective

Heat capacity $\left(C_p\right)$ is an extensive property but specific heat $(c)$ is intensive property. What will be the relation between $C_p$ and $c$ for 1 mole of water?

Explanation

For water, molar heat capacity,

$$\begin{aligned} C_p & =18 \times \text { Specific heat, } \mathrm{c} \\ C_p & =18 \times c \text { Specific heat } \\ c & =4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1} \quad \text{(for water)} \end{aligned}$$

Heat capacity,

$$\begin{aligned} C_p & =18 \times 4.18 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\ & =75.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \end{aligned}$$

40
Subjective

The difference between $C_p$ and $C_v$ can be derived using the empirical relation $H=U+p V$. Calculate the difference between $C_p$ and $C_v$ for 10 moles of an ideal gas.

Explanation

Given that, $C_v=$ heat capacity at constant volume,

$C_p=$ heat capacity at constant pressure

Difference between $C_p$ and $C_v$ is equal to gas constant ($R$).

$$\begin{aligned} \therefore \quad C_p-C_v & =n R \quad \text{(where, $n=$ no. of moles)}\\ & =10 \times 4.184 \mathrm{~J} \\ & =41.84 \mathrm{~J} \end{aligned}$$

41
Subjective

If the combustion of 1 g of graphite produces 20.7 kJ of heat, what will be molar enthalpy change? Give the significance of sign also.

Explanation

Given that, enthalpy of combustion of 1 g graphite $=20.7 \mathrm{~kJ}$

Molar enthalpy change for the combustion of graphite, $\Delta H=$ enthalpy of combustion of 1 g graphite $\times$ molar mass

$\begin{aligned} & \Delta H=-20.7 \mathrm{kJg}^{-1} \times 12 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \Delta H=-2.48 \times 10^2 \mathrm{~kJ} \mathrm{~mol}^{-1}\end{aligned}$

Negative sign in the value of $\Delta H$ indicates that the reaction is exothermic.

42
Subjective

The net enthalpy change of a reaction is the amount of energy required to break all the bonds in reactant molecules minus amount of energy required to form all the bonds in the product molecules. What will be the enthalpy change for the following reaction? $\mathrm{H}_2(\mathrm{~g})+\mathrm{Br}_2(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$. Given that, bond energy of $\mathrm{H}_2, \mathrm{Br}_2$ and HBr is 435 $\mathrm{kJ} \mathrm{mol}^{-1}$, $192 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $368 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

Explanation

Given that, bond energy of $\mathrm{H}_2=435 \mathrm{~kJ} \mathrm{~mol}^{-1}$

bond energy of $\mathrm{Br}_2=192 \mathrm{~kJ} \mathrm{~mol}^{-1}$

bond energy of $\mathrm{HBr}=368 \mathrm{~kJ} \mathrm{~mol}^{-1}$

For the reaction

$$\begin{aligned} &\begin{aligned} & \mathrm{H}_2(g)+\mathrm{Br}_2(g) \rightarrow 2 \mathrm{HBr}(g) \\ & \Delta_r H^s=\Sigma \mathrm{BE} \text { (Reactants) }-\Sigma \mathrm{BE} \text { (Products) } \\ & =\mathrm{BE}\left(\mathrm{H}_2\right)+\mathrm{BE}\left(\mathrm{Br}_2\right)-2 \mathrm{BE}(\mathrm{HBr}) \\ & =435+192-(2 \times 368) \mathrm{kJ} \mathrm{mol}^{-1} \\ & =-109 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}\\ \end{aligned}$$

43
Subjective

The enthalpy of vaporisation of $\mathrm{CCl}_4$ is $30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the heat required for the vaporisation of 284 g of $\mathrm{CCl}_4$ at constant pressure. (Molar mass of $\mathrm{CCl}_4=154 \mathrm{~g} \mathrm{~mol}^{-1}$ )

Explanation

$$\begin{aligned} & \text { Given that, } 1 \mathrm{~mol} \mathrm{of} \mathrm{CCl}_4=154 \mathrm{~g} \\ & \Delta_{\text {vap }} H \text { for } 154 \mathrm{~g} \mathrm{CCl}_4=30.5 \mathrm{~kJ} \\ & \therefore \quad \Delta_{\text {vap }} H \text { for } 284 \mathrm{~g} \mathrm{CCl}_4=\frac{30.5 \times 284}{154} \mathrm{~kJ}=56.25 \mathrm{~kJ} \end{aligned}$$