ExamGOAL
Books
44
Subjective

The enthalpy of reaction for the reaction

$$2 \mathrm{H}_2(g)+\mathrm{O}_2(g) \rightarrow 2 \mathrm{H}_2 \mathrm{O}(l) \text { is } \Delta_r H^{\mathrm{s}}=-572 \mathrm{~kJ} \mathrm{~mol}^{-1}$$

What will be standard enthalpy of formation of $\mathrm{H}_2 \mathrm{O}(l)$ ?

Explanation

Given that,

$2 \mathrm{H}_2(g)+\mathrm{O}_2(g) \rightarrow 2 \mathrm{H}_2 \mathrm{O}(l), \Delta_r H^{\circ}=-572 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Enthalpy of formation is the enthalpy change of the reaction when 1 mole of the compound is formed from its elements then

$$\mathrm{H}_2(g)+\frac{1}{2} \mathrm{O}_2(g) \rightarrow \mathrm{H}_2 \mathrm{O}(l), \Delta_r H^{\circ}=?$$

This can be obtained by dividing the given equation by 2.

Therefore, $$\Delta_f H^{\circ}\left(\mathrm{H}_2 \mathrm{O}\right)=-\frac{572 \mathrm{kJmol}^{-1}}{2}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$$

45
Subjective

What will be the work done on an ideal gas enclosed in a cylinder, when it is compressed by a constant external pressure, $p_{\text {ext }}$ in a single step as shown in figure? Explain graphically.

Explanation

Suppose total volume of the gas is $V_i$ and pressure of the gas inside cylinder is $p$. After compression by constant external pressure, $\left(p_{\text {ext }}\right)$ in a single step, final volume of the gas becomes $V_f$.

Then volume change, $\Delta v=\left(V_f-V_i\right)$

If $W$ is the work done on the system by movement of the piston, then

$$\begin{aligned} & W=p_{\text {ext }}(-\Delta V) \\ & W=-p_{\text {ext }}\left(V_f-V_i\right) \end{aligned}$$

This can be calculated from $p-V$ graph as shown in the figure. Work done is equal to the shaded area $A B V_f V_i$

The negative sign in this expression is required to obtain conventional sign for $W$ which will be positive. Because in case of compression work is done on the system, so $\Delta V$ will be negative.

46
Subjective

How will you calculate work done on an ideal gas in a compression, when change in pressure is carried out in infinite steps?

Explanation

When compression is carried out in infinite steps with change in pressure, it is a reversible process. The work done can be calculated from $p-V$ plot as shown in the given figure. Shaded area under the curve represents the work done on the gas.

47
Subjective

Represent the potential energy/enthalpy change in the following processes graphically.

(a) Throwing a stone from the ground to roof.

(b) $\frac{1}{2} \mathrm{H}_2(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_2(\mathrm{~g}) \rightleftharpoons \mathrm{HCl}(\mathrm{g}) \Delta_r H^{\mathrm{s}}=-92.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$

In which of the processes potential energy/enthalpy change is contributing factor to the spontaneity?

Explanation

Representation of potential energy/enthalpy change in the following processes

(a) Throwing a stone from the ground to roof.

(b) $\frac{1}{2} \mathrm{H}_2(g)+\frac{1}{2} \mathrm{Cl}_2(g) \rightleftharpoons \mathrm{HCl}(g) ; \Delta_r H^s=-92.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Energy increases in (a) and it decreases in (b) process. Hence, in process (b), enthalpy change is the contributing factor to the spontaneity.

48
Subjective

Enthalpy diagram for a particular reaction is given in figure. Is it possible to decide spontaneity of a reaction from given diagram. Explain.

Explanation

No, enthalpy is one of the contributing factors in deciding spontaneity but it is not the only factor. Another contributory factor, entropy factor has also to be taken into consideration.