ExamGOAL
Books
19
MCQ (Multiple Correct Answer)

Consider the following reaction between zinc and oxygen and choose the correct options out of the options given below

$$2 \mathrm{Zn}(s)+\mathrm{O}_2(g) \rightarrow 2 \mathrm{ZnO}(s) ; \Delta H=-693.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$$

A
The enthalpy of two moles of ZnO is less than the total enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ
B
The enthalpy of two moles of ZnO is more than the total enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ
C
$693.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ energy is evolved in the reaction
D
$693.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ energy is absorbed in the reaction
20
Subjective

18.0 g of water completely vaporises at $100^{\circ} \mathrm{C}$ and 1 bar pressure and the enthalpy change in the process is $40.79 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What will be the enthalpy change for vaporising two moles of water under the same conditions? What is the standard enthalpy of vaporisation for water?

Explanation

Given that, quantity of water $=18.0 \mathrm{~g}$, pressure $=1$ bar

As we know that, $18.0 \mathrm{~g~H}_2 \mathrm{O}=1 \mathrm{~mole~H}_2 \mathrm{O}$

Enthalpy change for vaporising $1 \mathrm{~mole}^{-1} \mathrm{H}_2 \mathrm{O}=40.79 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$\therefore$ Enthalpy change for vaporising 2 moles of $\mathrm{H}_2 \mathrm{O}=2 \times 40.79 \mathrm{~kJ}=81.358 \mathrm{~kJ}$

Standard enthalpy of vaporisation at $100^{\circ} \mathrm{C}$ and 1 bar pressure, $\Delta_{\text {vap }} H^{\circ}=+40.79 \mathrm{~kJ} \mathrm{~mol}^{-1}$

21
Subjective

One mole of acetone requires less heat to vaporise than 1 mole of water. Which of the two liquids has higher enthalpy of vaporisation?

Explanation

One mole of acetone requires less heat to vaporise than 1 mole of water. Hence, acetone has less enthalpy of vaporisation and water has higher enthalpy of vaporisation. It can be represented as $\left(\Delta H_V\right)$ water $>\left(\Delta H_V\right)$ acetone.

22
Subjective

Standard molar enthalpy of formation, $\Delta_f H^{\mathrm{s}}$ is just a special case of enthalpy of reaction, $\Delta_r H^{\mathrm{s}}$. Is the $\Delta_r H^{\mathrm{s}}$ for the following reaction same as $\Delta_f H^s$ ? Give reason for your answer.

$$\mathrm{CaO}(s)+\mathrm{CO}_2(\mathrm{~g}) \rightarrow \mathrm{CaCO}_3(\mathrm{~s}) ; \Delta_f H^{\mathrm{s}}=-178.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$$

Explanation

No, the $\Delta_r H^5$ for the given reaction is not same as $\Delta_r H^5$. The standard enthalpy change for the formation of one mole of a compound from its elements in their most stable states (reference states) is called standard molar enthalpy of formation, $\Delta_t H^{\mathrm{s}}$.

$$\mathrm{Ca}(\mathrm{s})+\mathrm{C}(\mathrm{s})+\frac{3}{2} \mathrm{O}_2(g) \rightarrow \mathrm{CaCO}_3(\mathrm{~s}) ; \Delta_{\mathrm{f}} \mathrm{H}^{\mathrm{s}}$$

This reaction is different from the given reaction. Hence,

$$\Delta_r H^{\circ} \neq \Delta_f H^{\circ}$$

23
Subjective

The value of $\Delta_f H^{\mathrm{s}}$ for $\mathrm{NH}_3$ is $-91.8 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. Calculate enthalpy change for the following reaction.

$$2 \mathrm{NH}_3(g) \rightarrow \mathrm{N}_2(g)+3 \mathrm{H}_2(g)$$

Explanation

Given, $\frac{1}{2} \mathrm{~N}_2(g)+\frac{3}{2} \mathrm{H}_2(g) \rightarrow \mathrm{NH}_3(g) ; \Delta_t H^{\mathrm{s}}=-91.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

($\Delta_f H^5$ means enthalpy of formation of 1 mole of $\mathrm{NH}_3$ )

$\therefore$ Enthalpy change for the formation of 2 moles of $\mathrm{NH}_3$

$$\mathrm{N}_2(g)+3 \mathrm{H}_2(g) \rightarrow 2 \mathrm{NH}_3(g) ; \Delta_t H^5=2 \times-91.8=-183.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$$

And for the reverse reaction,

$$2 \mathrm{NH}_3(g) \rightarrow \mathrm{N}_2(g)+3 \mathrm{H}_2(g) ; \Delta_f H^5=+183.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$$

Hence, the value of $\Delta_t H^5$ for $\mathrm{NH}_3$ is $+183.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$