ExamGOAL
Books
24
Subjective

Enthalpy is an extensive property. In general, if enthalpy of an overall reaction $A \rightarrow B$ along one route is $\Delta_r H$ and $\Delta_r H_1, \Delta_r H_2, \Delta_r H_3 \ldots$ represent enthalpies of intermediate reactions leading to product $B$. What will be the relation between $\Delta_r H$ overall reaction and $\Delta_r H_1, \Delta_r H_2 \ldots$ etc for intermediate reactions.

Explanation

In general, if enthalpy of an overall reaction $A \rightarrow B$ along one route is $\Delta_r H$ and $\Delta_r H_1, \Delta_r H_2, \Delta_r H_3 \ldots$ representing enthalpies of reaction leading to same product $B$ along another route, then we have

$$\Delta_r H=\Delta_r H_1+\Delta_r H_2+\Delta_r H_3+\ldots$$

25
Subjective

The enthalpy of atomisation for the reaction $\mathrm{CH}_4(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})$ is $1665 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the bond energy of $\mathrm{C}-\mathrm{H}$ bond?

Explanation

In $\mathrm{CH}_4$, there are four $\mathrm{C}-\mathrm{H}$ bonds. The enthalpy of atomisation of 1 mole of $\mathrm{CH}_4$ means dissociation of four moles of $\mathrm{C}-\mathrm{H}$ bond.

$$\begin{aligned} \therefore \quad \mathrm{C}-\mathrm{H} \text { bond energy per } \mathrm{mol} & =\frac{1665 \mathrm{~kJ}}{4 \mathrm{~mol}} \\ & =416.25 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$$

26
Subjective

Use the following data to calculate $\Delta_{\text {lattice }} H^{\mathrm{s}}$ for $\mathrm{NaBr} . \Delta_{\text {sub }} H^{\mathrm{s}}$ for sodium metal $=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, ionisation enthalpy of sodium $=496 \mathrm{~kJ} \mathrm{~mol}^{-1}$, electron gain enthalpy of bromine $=-325 \mathrm{~kJ} \mathrm{~mol}^{-1}$, bond dissociation enthalpy of bromine $=192 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_f H^{\mathrm{s}}$ for $\mathrm{NaBr}(s)=-360.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Explanation

Given that, $\Delta_{\text {sub }} H^5$ for Na metal $=108.4 \mathrm{k} \mathrm{J} \mathrm{mol}^{-1}$

IE of $\mathrm{Na}=496 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\text {eg }} H^{\mathrm{s}}$ of $\mathrm{Br}=-325 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\text {diss }} H^{\mathrm{s}}$ of $\mathrm{Br}=192 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_f H^{\mathrm{s}}$ for $\mathrm{NaBr}=-360.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Born-Haber cycle for the formation of NaBr is as

By applying Hess's law,

$$\begin{aligned} \Delta_f H^{\mathrm{s}} & =\Delta_{\text {sub }} H^{\mathrm{s}}+I E+\Delta_{\text {diss }} H^{\mathrm{s}}+\Delta_{\text {eg }} H^{\mathrm{s}}+U \\ -360.1 & =108.4+496+96+(-325)-U \\ U & =+735.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$$

27
Subjective

Given that $\Delta H=0$ for mixing of two gases. Explain whether the diffusion of these gases into each other in a closed container is a spontaneous process or not?

Explanation

The mixing of two gases have $\Delta H$ equal to zero. Therefore, it is spontaneous process because energy factor has no role to play but randomness increases i.e., randomness factor favours the process.

28
Subjective

Heat has randomising influence on a system and temperature is the measure of average chaotic motion of particles in the system. Write the mathematical relation which relates these three parameters.

Explanation

Heat has randomising influence on a system and temperature is the measure of average chaotic motion of particles in the system. The mathematical relation which relates these three parameters is

$$\Delta S=\frac{q_{\mathrm{rev}}}{T}$$

Here, $\quad \Delta S=$ change in entropy

$$\begin{aligned} \mathrm{q}_{\mathrm{rev}} & =\text { heat of reversible reaction } \\ T & =\text { temperature } \end{aligned}$$