ExamGOAL
Books
39
Subjective

For the reaction, $\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_3(\mathrm{~g})$

Equilibrium constant, $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_3\right]^2}{\left[\mathrm{~N}_2\right]\left[\mathrm{H}_2\right]^3}$

Some reactions are written below in Column I and their equilibrium constants in terms of $K_c$ are written in Column II. Match the following reactions with the corresponding equilibrium constant.

Column I
(Reaction)
Column II
(Equilibrium constant)
A. $$
2 \mathrm{~N}_2(\mathrm{~g})+6 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NH}_3(\mathrm{~g})
$$
1. $$
2 K_c
$$
B. $$
2 \mathrm{NH}_3(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g})
$$
2. $$
K_c^{1 / 2}
$$
C. $$
\frac{1}{2} \mathrm{~N}_2(\mathrm{~g})+\frac{3}{2} \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_3(\mathrm{~g})
$$
3. $$
\frac{1}{K_c}
$$
4. $$
K_c^2
$$

Explanation

$$\mathrm{A.\to(4)\quad B.\to(3)\quad C.\to(2)}$$

For the reaction,

$\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_3(\mathrm{~g})$

Equilibrium constant $K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_3\right]^2}{\left[\mathrm{~N}_2\right]\left[\mathrm{H}_2\right]^3}$

A. The given reaction $\left[2 \mathrm{~N}_2(g)+6 \mathrm{H}_2(g) \rightleftharpoons 4 \mathrm{NH}_3(g)\right]$ is twice the above reaction. Hence, $K=K_c^2$

B. The reaction $\left[2 \mathrm{NH}_3(g) \rightleftharpoons \mathrm{N}_2(g)+3 \mathrm{H}_2(g)\right]$ is reverse of the above reaction. Hence, $K=\frac{1}{K_c}$

C. The reaction $\left[\frac{1}{2} \mathrm{~N}_2(g)+\frac{3}{2} \mathrm{H}_2(g) \rightleftharpoons \mathrm{NH}_3(g)\right]$ is half of the above reaction. Hence, $K=\sqrt{K_c}=K_c^{\frac{1}{2}}$.

40
Subjective

Match standard free energy of the reaction with the corresponding equilibrium constant.

A. $$
\Delta G^{\ominus}>0
$$
1. $$K > 1$$
B. $$
\Delta G^{\ominus}<0
$$
2. $$K=1$$
C. $$
\Delta G^{\ominus}=0
$$
3. $$K=0$$
4. $$K < 1$$

Explanation

A. $\rightarrow(4)$

B. $\rightarrow$ (1)

C. $\rightarrow(2)$

As we know that, $\Delta G^{\ominus}=-R T \ln K$

A. If $\Delta G^{\circ}>0$, i.e., $\Delta G^{\circ}$ is positive, then $\ln K$ is negative i.e., $K<1$.

B. If $\Delta G^{\circ}<0$, i.e., $\Delta G^{\circ}$ is negative then $\ln K$ is positive i.e., $K>1$.

C. If $\Delta G^{\ominus}=0, \ln K=0$, i.e., $K=1$.

41
Subjective

Match the following species with the corresponding conjugate acid.

Species Conjugate acid
A. $$
\mathrm{NH}_3
$$
1. $$
\mathrm{CO}_3^{2-}
$$
B. $$
\mathrm{HCO}_3^{-}
$$
2. $$
\mathrm{NH}_4^{+}
$$
C. $$
\mathrm{H}_2 \mathrm{O}
$$
3. $$
\mathrm{H}_3 \mathrm{O}^{+}
$$
D. $$
\mathrm{HSO}_4^{-}
$$
4. $$
\mathrm{H}_2 \mathrm{SO}_4
$$
5. $$
\mathrm{H}_2 \mathrm{CO}_3
$$

Explanation

A. $\rightarrow$ (2)

B. $\rightarrow(5)$

C. $\rightarrow(3)$

D. $\rightarrow$ (4)

As conjugate acid $\rightarrow$ Base $+\mathrm{H}^{+}$

A. $\mathrm{NH}_3+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_4^{+}$

B. $\mathrm{HCO}_3^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_2 \mathrm{CO}_3$

C. $\mathrm{H}_2 \mathrm{O}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_3 \mathrm{O}^{+}$

D. $\mathrm{HSO}_4^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_2 \mathrm{SO}_4$

42
Subjective

Match the following graphical variation with their description.

A B
A. 1. Variation in product concentration with time
B. 2. Reaction at equilibrium
C. 3. Variation in reactant concentration with time

Explanation

A. $\rightarrow$ (3)

B. $\rightarrow(1)$

C. $\rightarrow(2)$

A. Graph (A) represents variation of reactant concentration with time.

B. Graph (B) represents variation of product concentration with time.

C. Graph (C) represents reaction at equilibrium.

43
Subjective

Match the Column I with Column II.

Column I Column II
A.. Equilibrium 1. $$
\Delta G>0, K<1
$$
B. Spontaneous reaction 2. $$\Delta G=0$$
C. Non-spontaneous reaction 3. $$\Delta G^\circ =0$$
4. $$\Delta G < 0, K > 1$$

Explanation

A. $\rightarrow(2,3)$

B. $\rightarrow$ (4)

C. $\rightarrow(1)$

A. $\Delta G\left(\Delta G^{\ominus}\right)$ is 0 , reaction has achieved equilibrium: at this point, there is no longer any free energy left to drive the reaction.

B. If $\Delta G<0$, then $K>1$ which implies a spontaneous reaction or the reaction which proceeds in the forward direction to such an extent that the products are present predominantly.

C. If $\Delta G>0$, then $K<1$, which implies a non-spontaneous reaction or a reaction which proceeds in the forward direction to such a small degree that only a very minute quantity of product is formed.