All the $\mathrm{C}-0$ bonds in carbonate ion $\left(\mathrm{CO}_3^{2-}\right)$ are equal in length. Explain.
Carbonate ion $\left(\mathrm{CO}_3^{2-}\right)=3$ bond pair +1 lone pair $\Rightarrow$ trigonal planar
Due to resonance all C$$-$$O bond length are equal.
What is meant by the term average bond enthalpy? Why is there difference in bond enthalpy of 0-H bond in ethanol $\left(\mathrm{C}_2 \mathrm{H}_5 \mathrm{OH}\right)$ and water?
All the similar bonds in a molecule do not have the same bond enthalpies. e.g., in $\mathrm{H}_2 \mathrm{O}(\mathrm{H}-\mathrm{O}-\mathrm{H})$ molecule after the breaking of first $\mathrm{O}-\mathrm{H}$ bond, the second $\mathrm{O}-\mathrm{H}$ bond undergoes some change because of changed chemical environment.
Therefore, in polyatomic molecules the term mean or average bond enthalpy is used. It is obtained by dividing total bond dissociation enthalpy by the number of bonds broken.
$$\begin{aligned} \text { e.g., } \mathrm{H}_2 \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{H}(\mathrm{g})+\mathrm{OH}(\mathrm{g}) ; \\ \Delta_{\mathrm{a}} H_1^{\circ}=502 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{OH}(\mathrm{g}) \longrightarrow \mathrm{H}+\mathrm{O}(\mathrm{g}) ; \\ \Delta_{\mathrm{a}} H_2^{\circ} =427 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\\ \text { Average } \mathrm{O}-\mathrm{H} \text { bond enthalpy }=\frac{502+427}{2}=464.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$$
The bod enthalpies of $\mathrm{O}-\mathrm{H}$ bond in $\mathrm{C}_2 \mathrm{H}_5 \mathrm{OH}$ and $\mathrm{H}_2 \mathrm{O}$ are different because of the different chemical (electronic) environment around oxygen atom.
Match the species in Column I with the type of hybrid orbitals in Column II.
Column I | Column II | ||
---|---|---|---|
A. | SF$$_4$$ | 1. | sp$$^3$$d$$^2$$ |
B. | IF$$_5$$ | 2. | d$$^2$$sp$$^3$$ |
C. | NO$$_2^+$$ | 3. | sp$$^3d$$ |
D. | NH$$_4^+$$ | 4. | sp$$^3$$ |
5. | sp |
A. $\rightarrow$ (3)
B. $\rightarrow$ (1)
C. $\rightarrow(5)$
D. $\rightarrow(4)$
$$\text { A. } \begin{aligned} \mathrm{SF}_4 & =\text { number of } b p(4)+\text { number of } l p(1) \\ & =s p^3 d \text { hybridisation } \end{aligned}$$
B. $\mathrm{IF}_5=$ number of $b p(5)+$ number of $l p(1)$ $=s p^3 d^2$ hybridisation
$$\begin{aligned} \text { C. } \mathrm{NO}_2^{+} & =\text {number of } b p(2)+\text { number of } l p(0) \\ & =\text { sphybridisation }\end{aligned}$$
D. $\mathrm{NH}_4^{+}=$number of $b p(4)+$ number of $l p(0)$ $=s p^3$ hybridisation.
Match the species in Column I with the geometry/shape in Column II.
Column I | Column II | ||
---|---|---|---|
A. | $$ \mathrm{H}_3 \mathrm{O}^{+} $$ |
1. | Linear |
B. | $$ \mathrm{HC} \equiv \mathrm{CH} $$ |
2. | Angular |
C. | $$ \mathrm{ClO}_2^{-} $$ |
3. | Tetrahedral |
D. | NH$$_4^+$$ | 4. | Trigonal bipyramidal |
5. | Pyramidal |
A. $\rightarrow(5)$
B. $\rightarrow$ (1)
C. $\rightarrow(2)$
$\mathrm{D} \rightarrow(3)$
A. $\mathrm{H}_3 \mathrm{O}^{+}=3 b p+1 / p$ pyramidal shape
B. $\mathrm{HC} \equiv \mathrm{CH} \Rightarrow$ linear as sphybridised shape
C. $\mathrm{ClO}_2^{-}=2 b p+2 / p \Rightarrow$ angular shape
D. $\mathrm{NH}_4^{+}=4 b p+0 / p \Rightarrow$ tetrahedral shape
Match the species in Column I with the bond order in Column II.
Column I | Column II | ||
---|---|---|---|
A. | NO | 1. | 1.5 |
B. | CO | 2. | 2.0 |
C. | O$$_2^-$$ | 3. | 2.5 |
D. | O$$_2$$ | 4. | 3.0 |
A. $\rightarrow$ (3)
B. $\rightarrow$ (4)
C. $\rightarrow(1)$
D. $\rightarrow(2)$
$$ \begin{gathered} \text { A. } N O(7+8=15)=\sigma 1 s^2, \sigma^{\star} 1 s^2, \sigma 2 s^2, \sigma^{\star} 2 s^2, \sigma 2 p_z^2, \pi 2 p_x^2 \approx \pi 2 p_y^2, \pi \star 2 p_x^1 \\ \text { Bond order }=\frac{1}{2}\left(N_b-N_a\right)=\frac{10-5}{2}=2.5 \end{gathered}$$
B. $\mathrm{CO}(6+8=14)=\sigma 1 s^2, \sigma^{\star} 1 s^2, \sigma 2 s^2, \sigma^{\star} 2 s^2, \sigma 2 p_z^2, \pi 2 p_x^2 \approx \pi 2 p_y^2$
Bond order $=\frac{10-4}{2}=3$
C. $\mathrm{O}_2^{-}(8+8+1=17)=\sigma 1 s^2, \sigma^{\star} 1 s^2, \sigma 2 s^2, \sigma * 2 s^2, \sigma 2 p_z^2, \pi 2 p_x^2 \approx \pi 2 p_y^2, \pi * 2 p_x^2 \approx \pi * 2 p_y^1$
Bond order $=\frac{10-7}{2}=1.5$
D. $\mathrm{O}_2(8+8=16)=\sigma 1 s^2, \sigma^{\star} 1 s^2, \sigma 2 s^2, \sigma^{\star} 2 s^2, \sigma 2 p_z^2, \pi 2 p_x^2 \approx \pi 2 p_y^2, \pi^{\star} 2 p_x^1 \approx \pi^{\star} 2 p_y^1$
Bond order $=\frac{10-6}{2}=2$