Match the items given in Column I with examples given in Column II.
Column I | Column II | ||
---|---|---|---|
A. | Hydrogen bond | 1. | C |
B. | Resonance | 2. | LiF |
C. | Ionic solid | 3. | H$$_2$$ |
D. | Covalent solid | 4. | HF |
5. | O$$_3$$ |
A. $\rightarrow$ (4)
B. $\rightarrow$ (5)
C. $\rightarrow$ (2)
D. $\rightarrow$ (1)
A. Hydrogen bond $\rightarrow \mathrm{HF}$
B. Resonance $\rightarrow \mathrm{O}_3$
C. Ionic bond $\rightarrow$ LiF
D. Covalent solid $\rightarrow \mathrm{C}$
Match the shape of molecules in Column I with the type of hybridisation in Column II.
Column I | Column II | ||
---|---|---|---|
A. | Tetrahedral | 1. | sp$$^2$$ |
B. | Trigonal | 2. | sp |
D. | Linear | 4. | sp$$^3$$ |
A. $\rightarrow(3)$
B. $\rightarrow(1)$
C. $\rightarrow(2)$
A. Tetrahedral shape $-s p^3$ hybridisation
B. Trigonal shape $-s p^2$ hybridisation
C. Linear shape - sp hybridisation
Assertion (A) Sodium chloride formed by the action of chlorine gas on sodium metal is a stable compound.
Reason (R) This is because sodium and chloride ions acquire octet in sodium chloride formation.
Assertion (A) Though the central atom of both $\mathrm{NH}_3$ and $\mathrm{H}_2 \mathrm{O}$ molecules are $s p^3$ hybridised, yet $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle is greater than that of $\mathrm{H}-\mathrm{O}-\mathrm{H}$.
Reason (R) This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.
Assertion (A) Among the two $0-\mathrm{H}$ bonds in $\mathrm{H}_2 \mathrm{O}$ molecule, the energy required to break the first $0-\mathrm{H}$ bond and the other $0-\mathrm{H}$ bond is the same.
Reason (R) This is because the electronic environment around oxygen is the same even after breakage of one $0-\mathrm{H}$ bond.