ExamGOAL
Books
18
Subjective

Consider a two slit interference arrangements (figure) such that the distance of the screen from the slits is half the distance between the slits. Obtain the value of $D$ in terms of $\lambda$ such that the first minima on the screen falls at a distance $D$ from the centre 0.

Explanation

From the given figure of two slit interference arrangements, we can write

$$\begin{aligned} & T_2 P=T_2 O+O P=D+x \\ \text{and}\quad & T_1 P=T_1 O-O P=D-x \\ & S_1 P=\sqrt{\left(S_1 T_1\right)^2+\left(P T_1\right)^2}=\sqrt{D^2+(D-x)^2} \\ \text{and}\quad & S_2 P=\sqrt{\left(S_2 T_2\right)^2+\left(T_2 P\right)^2}=\sqrt{D^2+(D+x)^2} \end{aligned}$$

The minima will occur when $S_2 P-S_1 P=(2 n-1) \frac{\lambda}{2}$

i.e., $\quad\left[D^2+(D+x)^2\right]^{1 / 2}-\left[D^2+(D-x)^2\right]^{1 / 2}=\frac{\lambda}{2}\quad$ [for first minima $n=1$ ]

If $x=D$

$$ \begin{aligned} & \text { we can write } \\ & {\left[D^2+4 D^2\right]^{1 / 2}-\left[D^2+0\right]^{1 / 2}=\frac{\lambda}{2}} \\ & \Rightarrow \quad\left[5 D^2\right]^{1 / 2}-\left[D^2\right]^{1 / 2}=\frac{\lambda}{2} \\ & \Rightarrow \quad \sqrt{5} D-D=\frac{\lambda}{2} \\ & \Rightarrow \quad D(\sqrt{5}-1)=\lambda / 2 \text { or } D=\frac{\lambda}{2(\sqrt{5}-1)} \\ \text{Putting}\quad & \sqrt{5}=2.236 \\ \Rightarrow\quad & \sqrt{5}-1=2.236-1=1.236 \\ & D=\frac{\lambda}{2(1.236)}=0.404 \lambda \end{aligned}$$

19
Subjective

Figure shown a two slit arrangement with a source which emits unpolarised light. $P$ is a polariser with axis whose direction is not given. If $I_0$ is the intensity of the principal maxima when no polariser is present, calculate in the present case, the intensity of the principal maxima as well as of the first minima.

Explanation

$$\begin{aligned} & A=\text { Resultant amplitude } \\ & =A \text { parallel }\left(A_{\|}\right)+A \text { perpendicular }\left(A_{\perp}\right) \\ & \Rightarrow \quad A=A_{\perp}+A_{\|} \\ & \text {Without } P \\ & A=A_{\perp}+A_{\|} \end{aligned}$$

$$\begin{aligned} A_1=A_{\perp}^1+A_{\perp}^2 & =A_{\perp}^0 \sin (k x-\omega t)+A_{\perp}^0 \sin (k x-\omega t+\phi) \\ A_{\|} & =A_{\|}^{(1)}+A_{\|}^{(2)} \\ A_{\|} & =A_{\|}^0[\sin (k x-\omega t)+\sin (k x-\omega t+\phi)] \end{aligned}$$

where $A_{\perp}^0, A_{\|}^0$ are the amplitudes of either of the beam in perpendicular and parallel polarisations.

$$\therefore \text { Intensity }=\left\{\left|A_{\perp}^0\right|^2+\left|A_{\|}^0\right|^2\right\}\left[\sin ^2(k x-\omega t)\left(1+\cos ^2 \phi+2 \sin \phi\right)+\sin ^2(k x-\omega t) \sin ^2 \phi\right]$$

$$\begin{aligned} & =\left\{\left|A_{\perp}^0\right|^2+\left|A_{\| \mid}^0\right|^2\right\}\left(\frac{1}{2}\right) \cdot 2(1+\cos \phi) \\ & =2\left|A_{\perp}^0\right|^2(1+\cos \phi), \text { since, }\left|A_{\perp}^0\right|_{\mathrm{av}}=\left|A_{\|}^0\right|_{\mathrm{av}} \end{aligned}$$

With $P$

Assume $A_{\perp}^2$ is blocked

$$\begin{aligned} \text { Intensity } & =\left(A_{\|}^1+A_{\|}^2\right)^2+\left(A_{\perp}^1\right)^2 \\ & =\left|A_{\perp}^0\right|^2(1+\cos \phi)+\left|A_{\perp}^0\right|^2 \cdot \frac{1}{2} \end{aligned}$$

Given, $I_0=4\left|A_{\perp}^0\right|^2=$ Intensity without polariser at principal maxima.

Intensity at principal maxima with polariser

$$=\left|A_{\perp}^0\right|^2\left(2+\frac{1}{2}\right)=\frac{5}{8} I_0$$

Intensity at first minima with polariser

$$=\left|A_{\perp}^0\right|^2(1-1)+\frac{\left|A_{\perp}^0\right|^2}{2}=\frac{I_0}{8} .$$

20
Subjective

$$A C=C O=D, S_1 C=S_2 C=d \ll D$$

A small transparent slab containing material of $\alpha=1.5$ is placed along $A S_2$ (figure). What will be the distance from 0 of the principal maxima and of the first minima on either side of the principal maxima obtained in the absence of the glass slab?

Explanation

In case of transparent glass slab of refractive index $\propto$, the path difference will be calculated as $\Delta x=2 d \sin \theta+(\alpha-1) L$.

In case of transparent glass slab of refractive index $\propto$, the path difference $=2 d \sin \theta+(\alpha-1) L$.

For the principal maxima, (path difference is zero) i.e.,

$$2 d \sin \theta_0+(\alpha-1) L=0$$

or $\quad \sin \theta_0=-\frac{L(\alpha-1)}{2 d}=\frac{-L(0.5)}{2 d} \quad[\because L=d / 4]$

or $$\sin \theta_0=\frac{-1}{16}$$

$$\begin{aligned} &\therefore \quad O P=D \tan \theta_0 \approx D \sin \theta_0=\frac{-D}{16}\\ &\text { For the first minima, the path difference is } \pm \frac{\lambda}{2}\\ &\therefore \quad 2 d \sin \theta_1+0.5 L= \pm \frac{\lambda}{2} \end{aligned}$$

$$\begin{aligned} \text { or } \quad \sin \theta_1 & =\frac{ \pm \lambda / 2-0.5 L}{2 d}=\frac{ \pm \lambda / 2-d / 8}{2 d} \\ & =\frac{ \pm \lambda / 2-\lambda / 8}{2 \lambda}= \pm \frac{1}{4}-\frac{1}{16} \end{aligned}$$

[ $\because$ The diffraction occurs if the wavelength of waves is nearly equal to the side width $(d)$ ]

On the positive side $\sin \theta_1^{\prime+}=+\frac{1}{4}-\frac{1}{16}=\frac{3}{16}$

On the negative side $\sin \theta^{\prime \prime}{ }_1^{-}=-\frac{1}{4}-\frac{1}{16}=-\frac{5}{16}$

The first principal maxima on the positive side is at distance

$$D \tan \theta_1^{\prime+}=D \frac{\sin \theta_1^{\prime+}}{\sqrt{1-\sin ^2 \theta_1^{\prime}}}=D \frac{3}{\sqrt{16^2-3^2}}=\frac{3 D}{\sqrt{247}} \text { above point } O$$

The first principal minima on the negative side is at distance

$$D \tan \theta^{\prime \prime}{ }_1=\frac{5 D}{\sqrt{16^2-5^2}}=\frac{5 D}{\sqrt{231}} \text { below point } O.$$

21
Subjective

Four identical monochromatic sources $A, B, C, D$ as shown in the (figure) produce waves of the same wavelength $\lambda$ and are coherent. Two receiver $R_1$ and $R_2$ are at great but equal distances from $B$.

(i) Which of the two receivers picks up the larger signal?

(ii) Which of the two receivers picks up the larger signal when $B$ is turned off?

(iii) Which of the two receivers picks up the larger signal when $D$ is turned off?

(iv) Which of the two receivers can distinguish which of the sources $B$ or $D$ has been turned off?

Explanation

Consider the disturbances at the receiver $R_1$ which is at a distanced from $B$. Let the wave at $R_1$ because of $A$ be $Y_A=a \cos \omega t$. The path difference of the signal from $A$ with that from $B$ is $\lambda / 2$ and hence, the phase difference is $\pi$. Thus, the wave at $R_1$ because of $B$ is $$ y_B=a \cos (\omega t-\pi)=-a \cos \omega t . $$ The path difference of the signal from $C$ with that from $A$ is $\lambda$ and hence the phase difference is $2 \pi$. Thus, the wave at $R_1$ because of $C$ is $Y_C=a \cos (\omega t-2 \pi)=a \cos \omega t$

$$\begin{aligned} &\text { The path difference between the signal from } D \text { with that of } A \text { is }\\ &\begin{aligned} \sqrt{d^2+\left(\frac{\lambda}{2}\right)^2}-(d-\lambda / 2) & =d\left(1+\frac{\lambda}{4 d^2}\right)^{1 / 2}-d+\frac{\lambda}{2} \\ & =d\left(1+\frac{\lambda^2}{8 d^2}\right)^{1 / 2}-d+\frac{\lambda}{2} \approx \frac{\lambda}{2} \quad(\because d \gg \lambda) \end{aligned} \end{aligned}$$

$$\begin{aligned} &\text { Therefore, phase difference is } \pi \text {. }\\ &\begin{aligned} & \therefore \quad Y_D=a \cos (\omega t-\pi)=-a \cos \omega t \\ & \text { Thus, the signal picked up at } R_1 \text { from all the four sources is } Y_{R_1}=y_A+y_B+y_C+y_D \\ & \qquad=a \cos \omega t-a \cos \omega t+a \cos \omega t-a \cos \omega t=0 \end{aligned} \end{aligned}$$

(i) Let the signal picked up at $R_2$ from $B$ be $y_B=a_1 \cos \omega t$.

The path difference between signal at $D$ and that at $B$ is $\lambda / 2$.

$\therefore \quad y_D=-a_1 \cos \omega t$

The path difference between signal at $A$ and that at $B$ is

$$\sqrt{(d)^2+\left(\frac{\lambda}{2}\right)^2}-d=d\left(1+\frac{\lambda^2}{4 d^2}\right)^{1 / 2}-d \simeq \frac{1 \lambda^2}{8 d^2}$$

As $d \gg \lambda$, therefore this path difference $\rightarrow 0$

and phase difference $=\frac{2 \pi}{\lambda}\left(\frac{1}{8} \frac{\lambda^2}{d^2}\right) \rightarrow 0$

Hence, $y_A=a_1 \cos (\omega t-\phi)$

Similarly, $y_C=a_1 \cos (\omega t-\phi)$

$$\begin{aligned} &\therefore \text { Signal picked up by } R_2 \text { is }\\ &\begin{aligned} & y_A+y_B+y_C+y_D =y=2 a_1 \cos (\omega t-\phi) \\ \therefore & |y|^2 =4 a_1^2 \cos ^2(\omega t-\phi) \\ \therefore & < I > =2 a_1^2 \end{aligned} \end{aligned}$$

Thus, R$_1$ picks up the larger signal.

(ii) If $B$ is switched off, $R_1$ picks up

$$y=a \cos \omega t$$

$$\begin{aligned} \therefore & \left\langle I_{R_1}\right\rangle =\frac{1}{2} a^2 \\ R_2 \text { picks up } & y =a \cos \omega t \\ \therefore & \left\langle I_{R_2}\right\rangle =a^2<\cos ^2 \omega t>=\frac{a^2}{2} \end{aligned}$$

(iii) Thus, $R_1$ and $R_2$ pick up the same signal.

If $D$ is switched off.

$R_1$ picks up $y=a \cos \omega t$

$$\begin{array}{rlrl} \therefore & \left\langle I_{R_1}\right\rangle =\frac{1}{2} a^2 \\ & R_2 \text { picks up } & y =3 a \cos \omega t \\ \therefore & \left\langle I_{R_2}\right\rangle =9 a^2<\cos ^2 \omega t>=\frac{9 a^2}{2} \end{array}$$

(iii) Thus, $R_1$ and $R_2$ pick up the same signal.

If $D$ is switched off.

$R_1$ picks up $y=a \cos \omega t$

$\therefore \quad\left\langle I_{R_1}\right\rangle=\frac{1}{2} a^2$

$R_2$ picks up $$y=3 a \cos \omega t$$

$$\therefore \quad\left\langle I_{R_2}\right\rangle=9 a^2<\cos ^2 \omega t>=\frac{9 a^2}{2}$$

Thus, $R_2$ picks up larger signal compared to $R_1$.

(iv) Thus, a signal at $R_1$ indicates $B$ has been switched off and an enhanced signal at $R_2$ indicates $D$ has been switched off.

22
Subjective

The optical properties of a medium are governed by the relative permittivity $\left(\varepsilon_r\right)$ and relative permeability $\left(\alpha_r\right)$. The refractive index is defined as $\sqrt{\alpha_r \varepsilon_r}=n$. For ordinary material, $\varepsilon_r>0$ and $\alpha_r>0$ and the positive sign is taken for the square root. In 1964, a Russian scientist V. Veselago postulated the existence of material with $\varepsilon_r<0$ and $\alpha_r<0$. Since, then such metamaterials have been produced in the laboratories and their optical properties studied. For such materials $n=-\sqrt{\alpha_r \varepsilon_r}$. As light enters a medium of such refractive index the phases travel away from the direction of propagation.

(i) According to the description above show that if rays of light enter such a medium from air (refractive index $=1$ ) at an angle $\theta$ in 2 nd quadrant, then the refracted beam is in the 3rd quadrant.

(ii) Prove that Snell's law holds for such a medium.

Explanation

Let us assume that the given postulate is true, then two parallel rays would proceed as shown in the figure below

(i) Let $A B$ represent the incident wavefront and $D E$ represent the refracted wavefront. All points on a wavefront must be in same phase and in turn, must have the same optical path length.

$$\begin{aligned} \text{Thus}\quad -\sqrt{\varepsilon_r \alpha_r} A E & =B C-\sqrt{\varepsilon_r \alpha_r} C D \\ \text{or}\quad B C & =\sqrt{\varepsilon_r \alpha_r}(C D-A E) \\ B C & >0, C D>A E \end{aligned}$$

As showing that the postulate is reasonable. If however, the light proceeded in the sense it does for ordinary material (viz. in the fourth quadrant, Fig. 2)

Then,

$$\begin{aligned} -\sqrt{\varepsilon_r \alpha_r} A E & =B C-\sqrt{\varepsilon_r \propto_r} C D \\ \text{or}\quad B C & =\sqrt{\varepsilon_r \alpha_r}(C D-A E) \end{aligned}$$

If $B C>0$, then $C D>A E$

which is obvious from Fig (i).

Hence, the postulate reasonable.

However, if the light proceeded in the sense it does for ordinary material, (going from 2nd quadrant to 4th quadrant) as shown in Fig. (i)., then proceeding as above,

$$\begin{aligned} -\sqrt{\varepsilon_r \propto_r} A E & =B C-\sqrt{\varepsilon_r \propto_r} C D \\ \text{or}\quad B C & =\sqrt{\varepsilon_r \propto_r}(C D-A E) \end{aligned}$$

As $A E>C D$, therefore $B C<0$ which is not possible. Hence, the given postulate is correct.

(ii) From Fig. (i)

$$\begin{array}{rlr} B C & =A C \sin \theta_i \\ \text{and}\quad C D-A E & =A C \sin \theta_r \\ \text{As}\quad B C & =\sqrt{\alpha_r \varepsilon_r} \\ \therefore\quad A C \sin \theta_i & =\sqrt{\varepsilon_r \alpha_r} A C \sin \theta_r \\ \text{or}\quad \frac{\sin \theta_i}{\sin \theta_r} & =\sqrt{\varepsilon_r \alpha_r}=n \end{array} \quad[C D-A E=B C]$$

Which proves Snell's law.