If a proton had a radius $R$ and the charge was uniformly distributed, calculate using Bohr theory, the ground state energy of a H -atom when
(i) $R=0.1 \mathop A\limits^o$ and(ii) $R=10 \mathop A\limits^o$.
The electrostatic force of attraction between positively charged nucleus and negatively charged electrons (Coulombian force) provides necessary centripetal force of revolution.
$$\frac{m v^2}{r_B}=-\frac{e^2}{r_B^2} \cdot \frac{1}{4 \pi \varepsilon_0}$$
By Bohr's postulates in ground state, we have
$$m v r=h$$
On solving,
$$ \begin{array}{ll} \therefore & m \frac{h^2}{m^2 r_B^2} \cdot \frac{1}{r_B}=+\left(\frac{e^2}{4 \pi \varepsilon_0}\right) \frac{1}{r_B^2} \\ \therefore & \frac{h^2}{m} \cdot \frac{4 \pi \varepsilon_0}{e^2}=r_B=0.51 \mathop A\limits^o\quad\text{[This is Bohr's radius]} \end{array}$$
$$\begin{aligned} &\text { The potential energy is given by }\\ &\begin{aligned} -\left(\frac{e^2}{4 \pi r_0}\right) \cdot \frac{1}{r_B} & =-27.2 \mathrm{eV} ; \mathrm{KE}=\frac{m v^2}{2} \\ & =\frac{1}{2} m \cdot \frac{h^2}{m^2 r_B^2}=\frac{h}{2 m r_B^2}=+13.6 \mathrm{eV} \end{aligned} \end{aligned}$$
Now, for an spherical nucleus of radius $R$,
If $R If $R>>r_B$ the electron moves inside the sphere with radius $r_B^{\prime}\left(r_B^{\prime}=\right.$ new Bohr radius). $$\begin{aligned}
&\begin{aligned}
\text{Charge inside}\quad r_B^{\prime 4} & =e\left(\frac{r_B^{\prime 3}}{R^3}\right) \\
\therefore\quad r_B^{\prime} & =\frac{h^2}{m}\left(\frac{4 \pi \varepsilon_0}{e^2}\right) \frac{R^3}{r_B^{\prime 3}} \\
r_B^{\prime 4} & =(0.51 \mathop A\limits^o) \cdot R^3 \quad [R=10 \mathop A\limits^o]\\
& =510(\mathop A\limits^o)^4
\end{aligned}\\
\end{aligned}$$ $$\begin{aligned}
\therefore r_B^{\prime} \simeq(510)^{1 / 4} \mathop A\limits^o & < R \\
\mathrm{KE} & =\frac{1}{2} m v^2=\frac{m}{2} \cdot \frac{h}{m^2 r_B^{\prime 2}}=\frac{h}{2 m} \cdot \frac{1}{r_B^{\prime 2}} \\
& =\left(\frac{h^2}{2 m r_B^2} \cdot\left(\frac{r_B^2}{r_B^{\prime 2}}\right)=(13.6 \mathrm{eV}) \frac{(0.51)^2}{(510)^{1 / 2}}=\frac{3.54}{22.6}=0.16 \mathrm{eV}\right. \\
\mathrm{PE} & =+\left(\frac{e^2}{4 \pi \varepsilon_0}\right) \cdot\left(\frac{r_B^{\prime 2}-3 R^2}{2 R^3}\right) \\
& =+\left(\frac{e^2}{4 \pi \varepsilon_0} \cdot \frac{1}{r_B}\right) \cdot\left(\frac{r_B\left(r_B^{\prime 2}-3 R^2\right)}{R^3}\right)=+(27.2 \mathrm{eV})\left[\frac{0.51(\sqrt{510}-300)}{1000}\right] \\
& =+(27.2 \mathrm{eV}) \cdot \frac{-141}{1000}=-3.83 \mathrm{~eV}
\end{aligned}$$
In the Auger process, an atom makes a transition to a lower state without emitting a photon. The excess energy is transferred to an outer electron which may be ejected by the atom (This is called an Auger, electron). Assuming the nucleus to be massive, calculate the kinetic energy of an $n=4$ Auger electron emitted by Chromium by absorbing the energy from a $n=2$ to $n=1$ transition.
The energy of the $n$th state $E_n=-Z^2 R \frac{1}{n^2}$ where $R$ is the Rydberg constant and $Z=24$.
The energy released in a transition from 2 to 1 is $\Delta E=Z^2 R\left(1-\frac{1}{4}\right)=\frac{3}{4} Z^2 R$.
The energy required to eject a $n=4$ electron is $E_4=Z^2 R \frac{1}{16}$. Thus, the kinetic energy of the Auger electron is
$$\begin{aligned} \mathrm{KE} & =Z^2 R\left(\frac{3}{4}-\frac{1}{16}\right)=\frac{1}{16} Z^2 R \\ & =\frac{11}{16} \times 24 \times 24 \times 13.6 \mathrm{~eV} \\ & =5385.6 \mathrm{~eV} \end{aligned}$$
The inverse square law in electrostatic is $|\mathbf{F}|=\frac{e^2}{\left(4 \pi \varepsilon_0\right) r^2}$ for the force between an electron and a proton. The $\left(\frac{1}{r}\right)$ dependence of $|\mathbf{F}|$ can be understood in quantum theory as being due to the fact that the particle of light (photon) is massless. If photons had a mass $m_p$, force would be modified to $|\mathbf{F}|=\frac{e^2}{\left(4 \pi \varepsilon_0\right) r^2}\left[\frac{1}{r^2}+\frac{\lambda}{r}\right] \cdot \exp (-\lambda r)$ where $\lambda=\frac{m_p c}{\hbar}$ and $\hbar=\frac{h}{2 \pi}$. Estimate the change in the ground state energy of a H -atom if $m_p$ were $10^{-6}$ times the mass of an electron.
$$\begin{aligned} &\text { For } m_p=10^{-6} \text { times, the mass of an electron, the energy associated with it is given by }\\ &\begin{aligned} m_p c^2 & =10^{-6} \times \text { electron mass } \times c^2 \\ & \approx 10^{-6} \times 0.5 \mathrm{MeV} \\ & \approx 10^{-6} \times 0.5 \times 1.6 \times 10^{-13} \\ & \approx 0.8 \times 10^{-19} \mathrm{~J} \end{aligned} \end{aligned}$$
$$\begin{aligned} &\text { The wavelength associated with is given by }\\ &\begin{aligned} \frac{\hbar}{m_p c} & =\frac{\hbar c}{m_p c^2}=\frac{10^{-34} \times 3 \times 10^8}{0.8 \times 10^{-19}} \\ & \approx 4 \times 10^{-7} \mathrm{~m} \gg \text { Bohr radius } \\ |\mathbf{F}| & =\frac{e^2}{4 \pi \varepsilon_0}\left[\frac{1}{r^2}+\frac{\lambda}{r}\right] \exp (-\lambda r) \end{aligned} \end{aligned}$$
where, $\quad \lambda^{-1}=\frac{\hbar}{m_p \mathrm{c}} \approx 4 \times 10^{-7} \mathrm{~m} \gg r_B$
$\therefore \quad \lambda \ll \frac{1}{r_B}$ i.e., $\lambda r_B \ll 1$
$$\begin{aligned} U(r) & =-\frac{e^2}{4 \pi \varepsilon_0} \cdot \frac{\exp (-\lambda r)}{r} \\ m v r & =\hbar \quad \therefore \quad v=\frac{\hbar}{m r} \\ \text{Also,}\quad\frac{m v^2}{r} & =\approx\left(\frac{e^2}{4 \pi \varepsilon_0}\right)\left[\frac{1}{r^2}+\frac{\lambda}{r}\right] \\ \therefore\quad\frac{\hbar^2}{m r^3} & =\left(\frac{e^2}{4 \pi \varepsilon_0}\right)\left[\frac{1}{r^2}+\frac{\lambda}{r}\right] \\ \therefore\quad\frac{\hbar^2}{m} & =\left(\frac{e^2}{4 \pi \varepsilon_0}\right)\left[r+\pi r^2\right. \\ \text{If } \lambda=0;\quad r & =r_B=\frac{\hbar}{m} \cdot \frac{4 \pi \varepsilon_0}{e^2} \\ \frac{\hbar^2}{m} & =\frac{e^2}{4 \pi \varepsilon_0} \cdot r_B \end{aligned}$$
Since, $\lambda^{-1} \gg r_B$, put $r=r_B+\delta$
$\therefore \quad r_B=r_B+\delta+\lambda\left(r_B^2+\delta^2+2 \delta r_B\right) ;$ neglect $\delta^2$
or $\quad 0=\lambda r_B^2+\delta\left(1+2 \lambda r_B\right)$
$\delta=\frac{-\lambda r_B^2}{1+2 \lambda r_B} \approx \lambda r_B^2\left(1-2 \lambda r_B\right)=-\lambda r_B^2$
$$\begin{aligned} &\text { Since, } \lambda r_B \ll 1\\ \therefore\quad &V(r)=-\frac{e^2}{4 \pi \varepsilon_0} \cdot \frac{\exp \left(-\lambda \delta-\lambda r_B\right)}{r_B+\delta} \end{aligned}$$
$\therefore \quad \quad V(r)=-\frac{e^2}{4 \pi \varepsilon_0} \frac{1}{r_B}\left[\left(1-\frac{\delta}{r_B}\right) \cdot\left(1-\lambda r_B\right)\right]$
$$\begin{aligned} & \cong(-27.2 \mathrm{eV}) \text { remains unchanged } \\ \mathrm{KE} & =-\frac{1}{2} m v^2=\frac{1}{2} m \cdot \frac{h^2}{m r^2}=\frac{h^2}{2\left(r_B+\delta\right)^2}=\frac{h^2}{2 r_B^2}\left(1-\frac{2 \delta}{r_B}\right) \\ & =(13.6 \mathrm{eV})\left[1+2 \lambda r_B\right] \end{aligned}$$
$$\begin{aligned} &\begin{aligned} \text { Total energy }\quad & =-\frac{e^2}{4 \pi \varepsilon_0 r_B}+\frac{h^2}{2 r_B^2}\left[1+2 \lambda r_B\right] \\ & =-27.2+13.6\left[1+2 \lambda r_B\right] \mathrm{eV} \\ \text { Change in energy }\quad& =13.6 \times 2 \lambda r_B \mathrm{eV}=27.2 \lambda r_B \mathrm{~eV} \end{aligned}\\ \end{aligned}$$
The Bohr model for the H-atom relies on the Coulomb's law of electrostatics. Coulomb's law has not directly been verified for very short distances of the order of angstroms. Supposing Coulomb's law between two opposite charge $+q_1,-q_2$ is modified to
$$\begin{aligned} |\mathbf{F}| & =\frac{q_1 q_2}{\left(4 \pi \varepsilon_0\right)} \frac{1}{r^2}, r \geq R_0 \\ & =\frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{1}{R_0^2}\left(\frac{R_0}{r}\right)^{\varepsilon}, r \leq R_0 \end{aligned}$$
Calculate in such a case, the ground state energy of a H -atom, if $E=0.1$, $R_0=1 \mathop A\limits^o$.
Considering the case, when $r \leq R_0=1 \mathop A\limits^o$
$$\begin{aligned} & \text { Let } \varepsilon=2+\delta \\ & F=\frac{q_1 q_2}{4 \pi \varepsilon_0} \cdot \frac{R_0^\delta}{r^{2+\delta}} \end{aligned}$$
where,
$$\begin{aligned} \frac{q_1 q_2}{4 \pi_0 \varepsilon_0} & =\left(1.6 \times 10^{-19}\right)^2 \times 9 \times 10^9 \\ & =23.04 \times 10^{-29} \mathrm{~N} \mathrm{~m}^2 \end{aligned}$$
The electrostatic force of attraction between positively charged nucleus and negatively charged electrons (Coulombian force) provides necessary centripetal force.
$$\begin{aligned} & =\frac{m v^2}{r} \quad \text { or } \quad v^2=\frac{\wedge R_0^\delta}{m r^{1+\delta}} \quad\text{.... (i)}\\ m v r & =n h \cdot r=\frac{n \hbar}{m v}=\frac{n h}{m}\left[\frac{m}{\wedge R_0^\delta}\right]^{1 / 2} r^{1 / 2+\delta / 2}\quad \text{[Applying Bohr's second postulates]} \end{aligned}$$
Solving this for $r$, we get $\quad r_n=\left[\frac{n^2 \hbar^2}{m \wedge R_0^\delta}\right]^{\frac{1}{1-\delta}}$ where, $r_n$ is radius of $n$th orbit of electron.
For $n=1$ and substituting the values of constant, we get
$$\begin{aligned} r_1 & =\left[\frac{\hbar^2}{m \wedge R_0^\delta}\right]^{\frac{1}{1-\delta}} \\ r_1 & =\left[\frac{1.05^2 \times 10^{-68}}{9.1 \times 10^{-31} \times 2.3 \times 10^{-28} \times 10^{+19}}\right]^{\frac{1}{2.9}} \\ & =8 \times 10^{-11} \\ & =0.08 \mathrm{~nm}\quad (< 0.1 \text{nm}) \end{aligned}$$
This is the radius of orbit of electron in ground state of hydrogen atom.
$$\begin{aligned} v_n & =\frac{n \hbar}{m r_n}=n \hbar\left(\frac{m \wedge R_0^\delta}{n^2 \hbar^2}\right)^{\frac{1}{1-\delta}} \\ \text { For } n & =1, v_1-\frac{\hbar}{m r_1}=1.44 \times 10^6 \mathrm{~m} / \mathrm{s} \end{aligned}$$
[This is the speed of electron in ground state]
$$\begin{aligned} &\mathrm{KE}=\frac{1}{2} m v_1^2-9.43 \times 10^{-19} \mathrm{~J}=5.9 \mathrm{eV}\\ &\text { [This is the KE of electron in ground state] } \end{aligned}$$
PE till $R_0=-\frac{\Lambda}{R_0}$ [This is the PE of electron in ground state at $r=R_0$ ]
PE from $R_0$ to $r=+\wedge R_0^\delta \int_{R_0}^r \frac{d r}{r^{2+\delta}}=+\frac{\wedge R_0^\delta}{-1-\delta}\left[\frac{1}{r^{1+\delta}}\right]_{R_0}^r$
[This is the PE of electron in ground state at $R_0$ to $r$ ]
$$\begin{aligned} & =-\frac{\wedge R_0^\delta}{1+\delta}\left[\frac{1}{r^{1+\delta}}-\frac{1}{R_0^{1+\delta}}\right]=-\frac{\Lambda}{1+\delta}\left[\frac{R_0^\delta}{r^{1+\delta}}-\frac{1}{R_0}\right] \\ P E & =-\frac{\Lambda}{1+\delta}\left[\frac{R_0^\delta}{r^{1+\delta}}-\frac{1}{R_0}+\frac{1+\delta}{R_0}\right] \\ P E & =-\frac{\Lambda}{-0.9}\left[\frac{R_0^{-1.9}}{r^{-0.9}}-\frac{1.9}{R_0}\right] \\ & =\frac{2.3}{0.9} \times 10^{-18}\left[(0.8)^{0.9}-1.9\right] \mathrm{J}=-17.3 \mathrm{̃eV} \end{aligned}$$
Total energy is $(-17.3+5.9)=-11.4 \mathrm{eV}$
This is the required TE of electron in ground state.