ExamGOAL
Books
30
Subjective

Show that the motion of a particle represented by $y=\sin \omega t-\cos \omega t$ is simple harmonic with a period of $2 \pi / \omega$.

Explanation

We have to convert the given combination of two harmonic functions to a single harmonic (sine or cosine) function.

Given, displacement function

$$\begin{aligned} y & =\sin \omega t-\cos \omega t \\ & =\sqrt{2}\left(\frac{1}{\sqrt{2}} \cdot \sin \omega t-\frac{1}{\sqrt{2}} \cdot \cos \omega t\right) \\ & =\sqrt{2}\left[\cos \left(\frac{\pi}{4}\right) \cdot \sin \omega t-\sin \left(\frac{\pi}{4}\right) \cdot \cos \omega t\right] \\ & =\sqrt{2}\left[\sin \left(\omega t-\frac{\pi}{4}\right)\right]=\sqrt{2}\left[\sin \left(\omega t-\frac{\pi}{4}\right)\right] \end{aligned}$$

Comparing with standard equation

$$y=\operatorname{asin}(\omega t+\phi), \text { we get }=\omega=\frac{2 \pi}{T} \Rightarrow T=\frac{2 \pi}{\omega}$$

Clearly, the function represents SHM with a period $T=\frac{2 \pi}{\omega}$.

31
Subjective

Find the displacement of a simple harmonic oscillator at which its PE is half of the maximum energy of the oscillator.

Explanation

Let us assume that the required displacement be $x$.

$\therefore$ Potential energy of the simple harmonic oscillator $=\frac{1}{2} k x^2$

$$\begin{aligned} \text{where,}\quad k & =\text { force constant }=m \omega^2 \\ \therefore \quad \mathrm{PE} & =\frac{1}{2} m \omega^2 x^2\quad \text{... (i)} \end{aligned}$$

Maximum energy of the oscillator

$$ \begin{aligned} &\mathrm{TE}=\frac{1}{2} m \omega^2 A^2 \quad\left[\because x_{\max }=A\right] \quad\text { ....(ii) } \end{aligned}$$

$$\begin{aligned} \text{where,}\quad A & =\text { amplitude of motion } \\ \text{Given,}\quad\mathrm{PE} & =\frac{1}{2} \mathrm{TE} \end{aligned}$$

$$\begin{aligned} \Rightarrow \quad & \frac{1}{2} m \omega^2 x^2 =\frac{1}{2}\left[\frac{1}{2} m \omega^2 A^2\right] \\ \Rightarrow \quad & x^2 =\frac{A^2}{2} \\ \text { or } \quad & x =\sqrt{\frac{A^2}{2}}= \pm \frac{A}{\sqrt{2}} \end{aligned}$$

Sign $$\pm$$ indicates either side of mean position.

32
Subjective

A body of mass $m$ is situated in a potential field $U(x)=U_0(1-\cos \alpha x)$ when, $U_0$ and $\alpha$ are constants. Find the time period of small oscillations.

Explanation

Given potential energy associated with the field

$$U(x)=U_0(1-\cos \alpha x)\quad \text{... (i)}$$

Now, force $F=-\frac{d U(x)}{d x}$

$$\left[\because \text { for conservatine force } f, \text { we can write } f=\frac{-d u}{d x}\right]$$

$$\begin{aligned} &\text { [We have assumed the field to be conservative] }\\ &\begin{aligned} & F=-\frac{d}{d x}\left(U_0-U_0 \cos \alpha x\right)=-U_0 \alpha \sin \alpha x \\ & F=-U_0 \alpha^2 x\quad \text{... (ii)} \end{aligned} \end{aligned}$$

$$[\because \text { for small oscillations } \alpha x \text { is small, } \sin \alpha x \approx \alpha x \text { ] }$$

$$\Rightarrow \quad F \propto(-x)$$

As, $U_0, \alpha$ being constant.

$\therefore$ Motion is SHM for small oscillations.

Standard equation for SHM

$$F=-m \omega^2 x\quad \text{... (iii)}$$

Comparing Eqs. (ii) and (iii), we get

$$\begin{aligned} m \omega^2 & =U_0 \alpha^2 \\ \omega^2 & =\frac{U_0 \alpha^2}{m} \text { or } \omega=\sqrt{\frac{U_0 \alpha^2}{m}} \\ \therefore \quad \text { Time period } T & =\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{U_0 \alpha^2}} \end{aligned}$$

33
Subjective

A mass of 2 kg is attached to the spring of spring constant $50 \mathrm{Nm}^{-1}$. The block is pulled to a distance of 5 cm from its equilibrium position at $x=0$ on a horizontal frictionless surface from rest at $t=0$. Write the expression for its displacement at anytime $t$.

Explanation

Consider the diagram of the spring block system. It is a SHM with amplitude of 5 cm about the mean position shown.

Given, $\quad$ spring constant $k=50 \mathrm{~N} / \mathrm{m}$

$m=$ mass attached $=2 \mathrm{~kg}$

$\therefore \quad$ Angular frequency $\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{50}{2}}=\sqrt{25}=5 \mathrm{rad} / \mathrm{s}$

Assuming the displacement function

$$y(t)=A \sin (\omega t+\phi)$$

where, $\phi=$ initial phase

But given at $t=0, y(t)=+A$

$$y(0)=+A=A \sin (\omega \times 0+\phi)$$

or $$\quad \sin \phi=1 \Rightarrow \phi=\frac{\pi}{2}$$

$\therefore$ The desired equation is $\quad y(t)=A \sin \left(\omega t+\frac{\pi}{2}\right)=A \cos \omega t$

Putting $A=5 \mathrm{~cm}, \omega=5 \mathrm{rad} / \mathrm{s}$

we get, $y(t)=5 \sin 5 t$

where, $t$ is in second and $y$ is in centimetre.

34
Subjective

Consider a pair of identical pendulums, which oscillate with equal amplitude independently such that when one pendulum is at its extreme position making an angle of $2^{\circ}$ to the right with the vertical, the other pendulum makes an angle of $1^{\circ}$ to the left of the vertical. What is the phase difference between the pendulums?

Explanation

Consider the situations shown in the diagram (i) and (ii)

Assuming the two pendulums follow the following functions of their angular displacements

$$\begin{array}{ll} & \theta_1=\theta_0 \sin \left(\omega t+\phi_1\right) \quad \text{... (i)}\\ \text { and } & \theta_2=\theta_0 \sin \left(\omega t+\phi_2\right)\quad \text{... (ii)} \end{array}$$

As it is given that amplitude and time period being equal but phases being different.

Now, for first pendulum at any time $t$

$\theta_1=+\theta_0\quad$ [Right extreme]

From Eq. (i), we get

$$\begin{aligned} \Rightarrow\quad \theta_0 & =\theta_0 \sin \left(\omega t+\phi_1\right) \text { or } 1=\sin \left(\omega t+\phi_1\right) \\ \Rightarrow\quad \sin \frac{\pi}{2} & =\sin \left(\omega t+\phi_1\right) \\ \text{or}\quad \left(\omega t+\phi_1\right) & =\frac{\pi}{2}\quad \text{... (iii)} \end{aligned}$$

Similarly, at the same instant t for pendulum second, we have

$$\theta_2=-\frac{\theta_0}{2}$$

where $\theta_0=2^{\circ}$ is the angular amplitude of first pendulum. For the second pendulum, the angular displacement is one degree ,therefore $\theta_2=\frac{\theta_0}{2}$ and negative sign is taken to show for being left to mean position.

From Eq. (ii), then

$$-\frac{\theta_0}{2}=\theta_0 \sin \left(\omega t+\phi_2\right)$$

$$\begin{aligned} \Rightarrow\quad\sin \left(\omega t+\phi_2\right) & =-\frac{1}{2} \Rightarrow\left(\omega t+\phi_2\right)=-\frac{\pi}{6} \text { or } \frac{7 \pi}{6} \\ \text{or}\quad \left(\omega t+\phi_2\right) & =-\frac{\pi}{6} \text { or } \frac{7 \pi}{6}\quad \text{.... (iv)} \end{aligned}$$

$$\begin{aligned} &\text { From Eqs. (iv) and (iii), the difference in phases }\\ &\begin{gathered} \left(\omega t+\phi_2\right)-\left(\omega t+\phi_1\right)=\frac{7 \pi}{6}-\frac{\pi}{2}=\frac{7 \pi-3 \pi}{6}=\frac{4 \pi}{6} \\ \text { or }\quad \left(\phi_2-\phi_1\right)=\frac{4 \pi}{6}=\frac{2 \pi}{3}=120^{\circ} \end{gathered} \end{aligned}$$