ExamGOAL
Books
14
Subjective

The Young's modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress?

Explanation

Young's modulus $(Y)=\frac{\text { Stress }}{\text { Longitudinal strain }}$

For same longitudinal strain, $\quad Y \propto$ stress

$$\therefore \quad \frac{Y_{\text {steel }}}{Y_{\text {rubber }}}=\frac{(\text { stress })_{\text {steel }}}{(\text { stress })_{\text {rubber }}} \quad \text{... (i)}$$

$$\begin{aligned} \text{But}\quad Y_{\text {steel }} & >Y_{\text {rubber }} \\ \frac{Y_{\text {steel }}}{Y_{\text {rubber }}} & >1 \end{aligned}$$

Therefore, from Eq. (i),

$$\begin{array}{ll} & \frac{(\text { stress })_{\text {steel }}}{(\text { stress })_{\text {rubber }}}>1 \\ \Rightarrow \quad & (\text { stress })_{\text {steel }}>(\text { stress })_{\text {rubber }} \end{array}$$

15
Subjective

Is stress a vector quantity?

Explanation

$$\text { Stress }=\frac{\text { Magnitude of internal reaction force }}{\text { Area of cross }- \text { section }}$$

Therefore, stress is a scalar quantity not a vector quantity.

16
Subjective

Identical springs of steel and copper are equally stretched. On which, more work will have to be done?

Explanation

Work done in stretching a wire is given by $W=\frac{1}{2} F \times \Delta l$

[where $F$ is applicd force and $\Delta l$ is extension in the wire]

As springs of steel and copper are equally stretched. Therefore, for same force $(F)$,

$$W \propto \Delta l\quad \text{... (i)}$$

$$\text { Young's modulus }(Y)=\frac{F}{A} \times \frac{l}{\Delta l} \Rightarrow \Delta l=\frac{F}{A} \times \frac{l}{Y}$$

As both springs are identical,

$$\Delta l \propto \frac{1}{Y}\quad \text{... (ii)}$$

From Eqs. (i) and (ii), we get

$$W \propto \frac{1}{y}$$

$$\begin{aligned} &\begin{array}{lll} \therefore & \frac{W_{\text {steel }}}{W_{\text {copper }}}=\frac{Y_{\text {copper }}}{Y_{\text {steel }}}< 1 & \left(\text { As, } Y_{\text {steel }}>Y_{\text {copper }}\right) \\ \Rightarrow & W_{\text {steel }}< W_{\text {copper }} \end{array}\\ &\text { Therefore, more work will be done for stretching copper spring. } \end{aligned}$$

17
Subjective

What is the Young's modulus for a perfect rigid body?

Explanation

Young's modulus $(Y)=\frac{F}{A} \times \frac{l}{\Delta l}$

For a perfectly rigid body, change in length $\Delta l=0$

$$Y=\frac{F}{A} \times \frac{l}{0}=\infty$$

Therefore, Young's modulus for a perfectly rigid body is infinite( $(\infty)$.

18
Subjective

What is the Bulk modulus for a perfect rigid body?

Explanation

Bulk modulus $(K)=\frac{p}{\Delta V / V}=\frac{p V}{\Delta V}$

For perfectly rigid body, change in volume $\Delta V=0$

$$\therefore\quad K=\frac{p V}{0}=\infty$$

Therefore, bulk modulus for a perfectly rigid body is infinity ( $\infty$ ).