The Young's modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress?
Young's modulus $(Y)=\frac{\text { Stress }}{\text { Longitudinal strain }}$
For same longitudinal strain, $\quad Y \propto$ stress
$$\therefore \quad \frac{Y_{\text {steel }}}{Y_{\text {rubber }}}=\frac{(\text { stress })_{\text {steel }}}{(\text { stress })_{\text {rubber }}} \quad \text{... (i)}$$
$$\begin{aligned} \text{But}\quad Y_{\text {steel }} & >Y_{\text {rubber }} \\ \frac{Y_{\text {steel }}}{Y_{\text {rubber }}} & >1 \end{aligned}$$
Therefore, from Eq. (i),
$$\begin{array}{ll} & \frac{(\text { stress })_{\text {steel }}}{(\text { stress })_{\text {rubber }}}>1 \\ \Rightarrow \quad & (\text { stress })_{\text {steel }}>(\text { stress })_{\text {rubber }} \end{array}$$
Is stress a vector quantity?
$$\text { Stress }=\frac{\text { Magnitude of internal reaction force }}{\text { Area of cross }- \text { section }}$$
Therefore, stress is a scalar quantity not a vector quantity.
Identical springs of steel and copper are equally stretched. On which, more work will have to be done?
Work done in stretching a wire is given by $W=\frac{1}{2} F \times \Delta l$
[where $F$ is applicd force and $\Delta l$ is extension in the wire]
As springs of steel and copper are equally stretched. Therefore, for same force $(F)$,
$$W \propto \Delta l\quad \text{... (i)}$$
$$\text { Young's modulus }(Y)=\frac{F}{A} \times \frac{l}{\Delta l} \Rightarrow \Delta l=\frac{F}{A} \times \frac{l}{Y}$$
As both springs are identical,
$$\Delta l \propto \frac{1}{Y}\quad \text{... (ii)}$$
From Eqs. (i) and (ii), we get
$$W \propto \frac{1}{y}$$
$$\begin{aligned} &\begin{array}{lll} \therefore & \frac{W_{\text {steel }}}{W_{\text {copper }}}=\frac{Y_{\text {copper }}}{Y_{\text {steel }}}< 1 & \left(\text { As, } Y_{\text {steel }}>Y_{\text {copper }}\right) \\ \Rightarrow & W_{\text {steel }}< W_{\text {copper }} \end{array}\\ &\text { Therefore, more work will be done for stretching copper spring. } \end{aligned}$$
What is the Young's modulus for a perfect rigid body?
Young's modulus $(Y)=\frac{F}{A} \times \frac{l}{\Delta l}$
For a perfectly rigid body, change in length $\Delta l=0$
$$Y=\frac{F}{A} \times \frac{l}{0}=\infty$$
Therefore, Young's modulus for a perfectly rigid body is infinite( $(\infty)$.
What is the Bulk modulus for a perfect rigid body?
Bulk modulus $(K)=\frac{p}{\Delta V / V}=\frac{p V}{\Delta V}$
For perfectly rigid body, change in volume $\Delta V=0$
$$\therefore\quad K=\frac{p V}{0}=\infty$$
Therefore, bulk modulus for a perfectly rigid body is infinity ( $\infty$ ).