ExamGOAL
Books
12
MCQ (Multiple Correct Answer)

Which of the following diagrams (figure) depicts ideal gas behaviour?

A
B
C
D
13
MCQ (Multiple Correct Answer)

When an ideal gas is compressed adiabatically, its temperature rises the molecules on the average have more kinetic energy than before. The kinetic energy increases,

A
because of collisions with moving parts of the wall only
B
because of collisions with the entire wall
C
because the molecules gets accelerated in their motion inside the volume
D
because of redistribution of energy amongest the molecules
14
Subjective

Calculate the number of atoms in 39.4 g gold. Molar mass of gold is $197 \mathrm{~g} \mathrm{~mole}^{-1}$.

Explanation
We know that,

$$ \begin{aligned} \text { Molar mass } & =\text { Mass of Avogadro's number of atoms (Molecules). } \\ & =6.023 \times 10^{23} \text { atoms. } \end{aligned}$$

Given, $\quad$ molar mass of gold $=197 \mathrm{~g} / \mathrm{mol}$

Now,

$\therefore \quad 197 \mathrm{~g}$ of gold contains $=6.023 \times 10^{23}$ atoms

$\therefore \quad 1 \mathrm{~g}$ of gold contain $=\frac{6.023 \times 10^{23}}{197}$ atoms

$\therefore \quad 39.4 \mathrm{~g}$ of gold contains $=\frac{6.023 \times 10^{23} \times 39.4}{197} \Rightarrow 1.20 \times 10^{23}$ atoms

15
Subjective

The volume of a given mass of a gas at $27^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ is 100 cc . What will be its volume at $327^{\circ} \mathrm{C}$ ?

Explanation

We have to convert the given temperatures in kelvin .

If pressure of a given mass of the gas is kept constant, then

$$\begin{array}{ll} & V \propto T \\ \Rightarrow & \frac{V}{T}=\text { constant } \quad \left[\begin{array}{l} V=\text { Volume of gas } \\ T=\text { Temperature of gas } \end{array}\right]\\ \Rightarrow & \frac{V_1}{T_1}=\frac{V_2}{T_2} \\ \Rightarrow & V_2=V_1\left(\frac{T_2}{T_1}\right) \\ & T_1=273+27=300 \mathrm{~K} \\ & T_2=273+327=600 \mathrm{~K} \\ \text { But } & V_1=100 \mathrm{cc} \\ & V_2=V_1\left(\frac{600}{300}\right) \\ & V_2=2 V_1 \\ \therefore \quad & V_2=2 \times 100=200 \mathrm{cc} \end{array}$$

16
Subjective

The molecules of a given mass of a gas have root mean square speeds of $100 \mathrm{~ms}^{-1}$ at $27^{\circ} \mathrm{C}$ and 1.00 atmospheric pressure. What will be the root mean square speeds of the molecules of the gas at $127^{\circ} \mathrm{C}$ and 2.0 atmospheric pressure?

Explanation

We know that for a given mass of a gas

$$v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}$$

where, $R$ is gas constant $T$ is temperature in kelvin $M$ is molar mass of the gas.

Clearly, $$\quad v_{\mathrm{rms}} \propto \sqrt{T}$$

$$\begin{aligned} &\text { As } R, M \text { are constants, }\\ &\frac{\left(v_{\mathrm{rms}}\right)_1}{\left(v_{\mathrm{rms}}\right)_2}=\sqrt{\frac{T_1}{T_2}} \end{aligned}$$

$$\begin{aligned} &\begin{aligned} \text { Given, }\quad \left(v_{\text {rms }}\right)_1 & =100 \mathrm{~m} / \mathrm{s} \\ T_1=27^{\circ} \mathrm{C} & =27+273=300 \mathrm{~K} \\ T_2=127^{\circ} \mathrm{C} & =127+273=400 \mathrm{~K} \end{aligned} \end{aligned}$$

$$\therefore$$ From Eq. (i)

$$\begin{aligned} & \frac{100}{\left(v_{\mathrm{rms}}\right)_2}=\sqrt{\frac{300}{400}}=\frac{\sqrt{3}}{2} \\ \Rightarrow \quad & \left(v_{\mathrm{rms}}\right)_2=\frac{2 \times 100}{\sqrt{3}}=\frac{200}{\sqrt{3}} \mathrm{~m} / \mathrm{s} \end{aligned}$$