ExamGOAL
Books
23
Subjective

When air is pumped into a cycle tyre the volume and pressure of the air in the tyre both are increased. What about Boyle's law in this case?

Explanation

When air is pumped, more molecules are pumped and Boyle's law is stated for situation where number of molecules remains constant. In this case, as the number of air molecules keep increasing. Hence, this is a case of variable mass. Boyle's law (and even Charle's law) is only applicable in situations, where number of gas molecules remains fixed. Hence, in this case Boyle's law is not applicable.

24
Subjective

A balloon has 5.0 mole of helium at $7^{\circ} \mathrm{C}$. Calculate

(a) the number of atoms of helium in the balloon.

(b) the total internal energy of the system.

Explanation

$$\begin{aligned} &\text { Given, number of moles of helium }=5\\ &T=7^{\circ} \mathrm{C}=7+273=280 \mathrm{~K} \end{aligned}$$

$$\begin{aligned} &\text { (a) Hence, number of atoms (He is monoatomic) }\\ &\begin{aligned} & =\text { Number of moles } \times \text { Avogadro's number } \\ & =5 \times 6.023 \times 10^{23} \\ & =30.015 \times 10^{23} \\ & =3.0 \times 10^{24} \text { atoms } \end{aligned} \end{aligned}$$

$$\text { (b) Now, average kinetic energy per molecule }=\frac{3}{2} k_B T$$

Here, $k_B=$ Boltzmann constant. $$\quad$$ (It has only 3 degrees of freedom)

$$\begin{aligned} &\therefore \text { Total energy of all the atoms }\\ &\begin{aligned} & =\text { Total internal energy } \\ & =\frac{3}{2} k_b T \times \text { number of atoms } \\ & =\frac{3}{2} \times 1.38 \times 10^{-23} \times 280 \times 3.0 \times 10^{24} \\ & =1.74 \times 10^4 \mathrm{~J} \end{aligned} \end{aligned}$$

25
Subjective

Calculate the number of degrees of freedom of molecules of hydrogen in 1 cc of hydrogen gas at NTP.

Explanation

As given molecules are of hydrogen.

$\therefore$ Volume occupied by 1 mole

$$\begin{aligned} & =1 \mathrm{~mole} \text { of the gas at NTP } \\ & =22400 \mathrm{~mL}=22400 \mathrm{cc} \end{aligned}$$

$\therefore$ Number of molecules in 1 cc of hydrogen

$$=\frac{6.023 \times 10^{23}}{22400}=2.688 \times 10^{19}$$

$\mathrm{H}_2$ is a diatomic gas, having a total of 5 degrees of freedom (3 translational + 2 rotational)

$\therefore$ Total degrees of freedom possessed by all the molecules

$$\begin{aligned} & =5 \times 2.688 \times 10^{19} \\ & =1.344 \times 10^{20} \end{aligned}$$

26
Subjective

An insulated container containing monoatomic gas of molar mass $m$ is moving with a velocity $v_0$. If the container is suddenly stopped, find the change in temperature.

Explanation

According to kinetic interpretation of temperature, absolute temperature of a given sample of a gas is proportional to the total translational kinetic energy of its molecules.

Hence, any change in absolute temperature of a gas will contribute to corresponding change in translational KE and vice-versa.

Assuming $n=$ number of moles.

Given, $m=$ molar mass of the gas.

When, the container stops, its total KE is transferred to gas molecules in the form of translational $K E$, thereby increasing the absolute temperature.

If $\Delta T=$ change in absolute temperature.

$$\text { Then, } \mathrm{KE} \text { of molecules due to velocity } \mathrm{v}_0, \mathrm{KE}=\frac{1}{2}(m n) v_0^2\quad \text{... (i)}$$

$$\text { Increase in translational } \mathrm{KE}=n \frac{3}{2} R(\Delta T)\quad \text{... (ii)}$$

$$\begin{aligned} &\text { According to kinetic theory Eqs. (i) and (ii) are equal }\\ &\begin{aligned} \Rightarrow \quad & \frac{1}{2}(m n) v_0^2 =n \frac{3}{2} R(\Delta T) \\ \Rightarrow \quad & (m n) v_0^2 =n 3 R(\Delta T) \\ \Rightarrow \quad & \Delta T =\frac{(m n) v_0^2}{3 n R} \\ \Rightarrow \quad & \Delta T =\frac{m v_0^2}{3 R} \end{aligned} \end{aligned}$$

27
Subjective

Explain why

(a) there is no atmosphere on moon

(b) there is fall in temperature with altitude

Explanation

The moon has small gravitational force (pull) and hence, the escape velocity is small. The value of escape velocity for the moon is $4.6 \mathrm{~km} / \mathrm{s}$.

As the moon is in the proximity of the earth as seen from the sun, the moon has the same amount of heat per unit area as that of the earth.

The air molecules have large range of speeds. Even though the rms speed of the air molecules is smaller than the escape velocity on the moon, a significant number of molecules have speed greater than escape velocity and they escape.

Now, rest of the molecules arrange the speed distribution for the equilibrium temperature. Again a significant number of molecules escape as their speed exceed escape speed. Hence, over a long time the moon has lost most of its atmosphere.

$$\begin{aligned} \text { At } 300 \mathrm{~K}, v_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{m}}} & =\sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 300}{7.3 \times 10^{-26}}}=1.7 \mathrm{~km} / \mathrm{s} \\ v_{\text {es }} \text { for moon } & =4.6 \mathrm{~km} / \mathrm{s} \quad \quad\left[\mathrm{v}_{\mathrm{es}}=\text { escape velocity }\right] \end{aligned}$$

(b) As the molecules move higher; their potential energy increases and hence, kinetic energy decreases and hence, temperature reduces.

At greater height more volume is available and gas expands and hence, some cooling takes place.