ExamGOAL
Books
27
MCQ (Single Correct Answer)

If $|\overrightarrow{\mathbf{a}}|=10,|\overrightarrow{\mathbf{b}}|=2$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=12$, then the value of $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$ is

A
5
B
10
C
14
D
16
28
MCQ (Single Correct Answer)

The vectors $\lambda \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}, \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ are coplanar, if

A
$\lambda=-2$
B
$\lambda=0$
C
$\lambda=1$
D
$\lambda=-1$
29
MCQ (Single Correct Answer)

If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are unit vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{0}$, then the value of $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$ is

A
1
B
3
C
$-\frac{3}{2}$
D
None of these
30
MCQ (Single Correct Answer)

The projection vector of $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}$ is

A
$\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \vec{b}$
B
$\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
C
$\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|}$
D
$\left(\frac{\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}|^2}\right) \hat{\mathbf{b}}$
31
MCQ (Single Correct Answer)

If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are three vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{0}$ and $|\overrightarrow{\mathbf{a}}|=2$, $|\overrightarrow{\mathbf{b}}|=3$ and $|\overrightarrow{\mathbf{c}}|=5$, then the value of $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$ is

A
0
B
1
C
$-$19
D
38