If $l_1, m_1, n_1, l_2, m_2, n_2$ and $l_3, m_3, n_3$ are the direction cosines of three mutually perpendicular lines, then prove that the line whose direction cosines are proportional to $l_1+l_2+l_3, m_1+m_2+m_3$ and $n_1+n_2+n_3$ makes equal angles with them.
$$\begin{aligned} \text{Let}\quad & \overrightarrow{\mathbf{a}}=l_1 \hat{\mathbf{i}}+m_1 \hat{\mathbf{j}}+n_1 \hat{\mathbf{k}} \\ & \overrightarrow{\mathbf{b}}=l_2 \hat{\mathbf{i}}+m_2 \hat{\mathbf{j}}+n_2 \hat{\mathbf{k}} \\ & \overrightarrow{\mathbf{c}}=l_3 \hat{\mathbf{i}}+m_3 \hat{\mathbf{j}}+n_3 \hat{\mathbf{k}} \\ & \overrightarrow{\mathbf{d}}=\left(l_1+l_2+l_3\right) \hat{\mathbf{i}}+\left(m_1+m_2+m_2\right) \hat{\mathbf{j}}+\left(n_1+n_2+n_3\right) \hat{\mathbf{k}} \end{aligned}$$
Also, let $\alpha, \beta$ and $\gamma$ are the angles between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{d}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{d}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$.
$$\begin{aligned} \therefore \quad \cos \alpha & =l_1\left(l_1+l_2+l_3\right)+m_1\left(m_1+m_2+m_3\right)+n_1\left(n_1+n_2+n_3\right) \\ & =l_1^2+l_1 l_2+l_1 l_3+m_1^2+m_1 m_2+m_1 m_3+n_1^2+n_1 n_2+n_1 n_3 \end{aligned}$$
$$\begin{aligned} & =\left(l_1^2+m_1^2+n_1^2\right)+\left(l_1 l_2+l_1 l_3+m_1 m_2+m_1 m_3+n_1 n_2+n_1 n_3\right) \\ & =1+0=1 \\ & {\left[\because l_1^2+m_1^2+n_1^2=1 \text { and } l_1 \perp l_2, l_1 \perp l_3, m_1 \perp m_2, m_1 \perp m_3, n_1 \perp n_2, n_1 \perp n_3\right]} \end{aligned}$$
Similarly,
$$\begin{aligned} \cos \beta & =l_2\left(l_1+l_2+l_3\right)+m_2\left(m_1+m_2+m_3\right)+n_2\left(n_1+n_2+n_3\right) \\ & =1+0 \text { and } \cos \gamma=1+0 \end{aligned}$$
$$\Rightarrow \quad \cos \alpha=\cos \beta=\cos \gamma$$
$$\Rightarrow \quad \alpha=\beta=\gamma$$
So, the line whose direction cosines are proportional to $l_1+l_2+l_3 m_1+m_2+m_3$, $n_1+n_2+n_3$ makes equal angles with the three mutually perpendicular lines whose direction cosines are $l_1, m_1, n_1, l_2, m_2, n_2$ and $l_3, m_3, n_3$ respectively.
Distance of the point $(\alpha, \beta, \gamma)$ from $Y$-axis is
If the direction cosines of a line are $k, k$ and $k$, then
The distance of the plane $\overrightarrow{\mathbf{r}}\left(\frac{2}{7} \hat{\mathbf{i}}+\frac{3}{7} \hat{\mathbf{j}}-\frac{6}{7} \hat{\mathbf{k}}\right)=1$ from the origin is
The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is