ExamGOAL
Books
53
Subjective

Two cards are drawn successively without replacement from a well shuffled deck of cards. Find the mean and standard variation of the random variable $X$, where $X$ is the number of aces.

Explanation

Let $X$ denotes a random variable of number of aces.

$$\begin{array}{l} \therefore & X =0,1,2 \\ \text { Now, } & P(X =0)=\frac{48}{52} \cdot \frac{47}{51}=\frac{2256}{2652} \\ & P(X=1)=\frac{48}{52} \cdot \frac{4}{51}+\frac{4}{52} \cdot \frac{48}{51}=\frac{384}{2652} \\ & P(X=2)=\frac{4}{52} \cdot \frac{3}{51}=\frac{12}{2652} \end{array}$$

$X$ 0 1 2
$P(X)$ $\frac{2256}{2652}$ $\frac{384}{2652}$ $\frac{12}{2652}$
$XP(X)$ 0 $\frac{384}{2652}$ $\frac{24}{2652}$
$X^2P(X)$ 0 $\frac{384}{2652}$ $\frac{48}{2652}$

$$\begin{aligned} &\text { We know that, } \operatorname{Mean}(\mu)=E(X)=\Sigma X P(X)\\ &\begin{aligned} & =0+\frac{384}{2652}+\frac{24}{2652} \\ & =\frac{408}{2652}=\frac{2}{13} \end{aligned} \end{aligned}$$

Also,

$$\begin{array}{rlr} \operatorname{Var}(X) & =E\left(X^2\right)-[E(X)]^2=\Sigma X^2 P(X)-[E(X)]^2 & \\ & =\left[0+\frac{384}{2652}+\frac{48}{2652}\right]-\left(\frac{2}{13}\right)^2 & {\left[\because E(X)=\frac{2}{13}\right]} \\ & =\frac{432}{2652}-\frac{4}{169}=0.1628-0.0236=0.1391 & \end{array}$$

$\therefore \quad$ Standard deviation $=\sqrt{\operatorname{Var}(X)}=\sqrt{0.139}=0.373$ (approx)

54
Subjective

A die is tossed twice. If a 'success' is getting an even number on a toss, then find the variance of the number of successes.

Explanation

Let $X$ be the random variable for a 'success' for getting an even number on a toss.

$\therefore \quad X=0,1,2, n=2, p=\frac{3}{6}=\frac{1}{2}$ and $q=\frac{1}{2}$

$$\begin{array}{ll} \text { At } X=0, & P(X=0)={ }^2 C_0\left(\frac{1}{2}\right)^0\left(\frac{1}{2}\right)^{2-0}=\frac{1}{4} \\ \text { At } X=1, & P(X=1)={ }^2 C_1\left(\frac{1}{2}\right)^1\left(\frac{1}{2}\right)^{2-1}=2 \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2} \\ \text { At } X=2, & P(X=2)={ }^2 C_2\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)^{2-2}=\frac{1}{4} \end{array}$$

$X$ 0 1 2
$P(X)$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$
$XP(X)$ 0 $\frac{1}{2}$ $\frac{1}{2}$
$X^2P(X)$ 0 $\frac{1}{2}$ 1

$\therefore \quad \Sigma X P(X)=0+\frac{1}{2}+\frac{1}{2}=1\quad\text{.... (i)}$

and $$\Sigma X^2 P(X)=0+\frac{1}{2}+1=\frac{3}{2}\quad\text{.... (ii)}$$

$$\begin{aligned} \because \operatorname{Var}(X) & =E\left(X^2\right)-[E(X)]^2 \\ & =\Sigma X^2 P(X)-[\Sigma X P(X)]^2=\frac{3}{2}-(1)^2=\frac{1}{2} \quad \text { [using Eqs. (i) and (ii)] } \end{aligned}$$

55
Subjective

There are 5 cards numbered 1 to 5, one number on one card. Two cards are drawn at random without replacement. Let $X$ denotes the sum of the numbers on two cards drawn. Find the mean and variance of $X$.

Explanation

Here, $$S=\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),(1,5),(5,1),(2,4),(4,2),(2,5),(5,2),(3,4),(4,3),(3,5),(5,3),(5,4),(4,5)\}$$

$$\Rightarrow n(S)=20$$

Let random variable be $X$ which denotes the sum of the numbers on two cards drawn.

$\therefore\qquad X=3,4,5,6,7,8,9$

$$\begin{aligned} & \text { At } X=3, P(X)=\frac{2}{20}=\frac{1}{10} \\ & \text { At } X=4, P(X)=\frac{2}{20}=\frac{1}{10} \\ & \text { At } X=5, P(X)=\frac{4}{20}=\frac{1}{5} \\ & \text { At } X=6, P(X)=\frac{4}{20}=\frac{1}{5} \\ & \text { At } X=7, P(X)=\frac{4}{20}=\frac{1}{5} \\ & \text { At } X=8, P(X)=\frac{2}{20}=\frac{1}{10} \\ & \text { At } X=9, P(X)=\frac{2}{20}=\frac{1}{10} \end{aligned}$$

$\therefore \quad$ Mean, $E(X)=\Sigma X P(X)=\frac{3}{10}+\frac{4}{10}+\frac{5}{5}+\frac{6}{5}+\frac{7}{5}+\frac{8}{10}+\frac{9}{10}$

$=\frac{3+4+10+12+14+8+9}{10}=6$

$$\begin{aligned} &\text { Also, }\\ &\begin{aligned} \Sigma X^2 P(X) & =\frac{9}{10}+\frac{16}{10}+\frac{25}{5}+\frac{36}{5}+\frac{49}{5}+\frac{64}{10}+\frac{81}{10} \\ & =\frac{9+16+50+72+98+64+81}{10}=39 \end{aligned} \end{aligned}$$

$$\begin{aligned} \therefore \quad \operatorname{Var}(X) & =\Sigma X^2 P(X)-[\Sigma X P(X)]^2 \\ & =39-(6)^2=39-36=3 \end{aligned}$$

56
MCQ (Single Correct Answer)

If $P(A)=\frac{4}{5}$ and $P(A \cap B)=\frac{7}{10}$, then $P(B / A)$ is equal to

A
  $\frac{1}{10}$
B
$\frac{1}{8}$
C
$\frac{7}{8}$
D
$\frac{17}{20}$
57
MCQ (Single Correct Answer)

If $P(A \cap B)=\frac{7}{10}$ and $P(B)=\frac{17}{20}$, then $P(A / B)$ equals to

A
$\frac{14}{17}$
B
$\frac{17}{20}$
C
$\frac{7}{8}$
D
$\frac{1}{8}$