A factory produces bulbs. The probability that any one bulb is defective is $\frac{1}{50}$ and they are packed in 10 boxes. From a single box, find the probability that
(i) none of the bulbs is defective.
(ii) exactly two bulbs are defective.
(iii) more than 8 bulbs work properly.
Let $X$ is the random variable which denotes that a bulb is defective.
Also, $n=10, p=\frac{1}{50}$ and $q=\frac{49}{50}$ and $P(X=r)={ }^n C_r p^r q^{n-r}$
(i) None of the bulbs is defective i.e., $r=0$
$$\therefore \quad p(X=r)=P_{(0)}={ }^{10} \mathrm{C}_0\left(\frac{1}{50}\right)^0\left(\frac{49}{50}\right)^{10-0}=\left(\frac{49}{50}\right)^{10}$$
(ii) Exactly two bulbs are defective i.e., $r=2$
$$\begin{aligned} \therefore \quad P(X & =r)=P_{(2)}={ }^{10} C_2\left(\frac{1}{50}\right)^2\left(\frac{49}{50}\right)^8 \\ & =\frac{10!}{8!2!}\left(\frac{1}{50}\right)^2 \cdot\left(\frac{49}{50}\right)^8=45 \times\left(\frac{1}{50}\right)^{10} \times(49)^8 \end{aligned}$$
$$\begin{aligned} &\text { (iii) More than } 8 \text { bulbs work properly i.e., there is less than } 2 \text { bulbs which are defective. }\\ &\begin{array}{lrl} \text { So, } & r<2 \Rightarrow r=0,1 \\ \therefore & P(X=r)=P(r<2)=P(0)+P(1) \end{array} \end{aligned}$$
$$\begin{aligned} & ={ }^{10} C_0\left(\frac{1}{50}\right)^0\left(\frac{49}{50}\right)^{10-0}+{ }^{10} C_1\left(\frac{1}{50}\right)^1\left(\frac{49}{50}\right)^{10-1} \\ & =\left(\frac{49}{50}\right)^{10}+\frac{10!}{1!9!} \cdot \frac{1}{50} \cdot\left(\frac{49}{50}\right)^9 \\ & =\left(\frac{49}{50}\right)^{10}+\frac{1}{5} \cdot\left(\frac{49}{50}\right)^9=\left(\frac{49}{50}\right)^9\left(\frac{49}{50}+\frac{1}{5}\right) \\ & =\left(\frac{49}{50}\right)^9\left(\frac{59}{50}\right)=\frac{59(49)^9}{(50)^{10}} \end{aligned}$$
Suppose you have two coins which appear identical in your pocket. You know that, one is fair and one is 2 headed. If you take one out, toss it and get a head, what is the probability that it was a fair coin?
Let $E_1=$ Event that fair coin is drawn
$E_2=$ Event that 2 headed coin is drawn
$E=$ Event that tossed coin get a head
$\therefore \quad P\left(E_1\right)=1 / 2, P\left(E_2\right)=1 / 2, P\left(E / E_1\right)=1 / 2$ and $P\left(E / E_2\right)=1$
$$\begin{aligned} &\text { Now, using Baye's theorem } P\left(E_1 / E\right)=\frac{P\left(E_1\right) \cdot P\left(E / E_1\right)}{P\left(E_1\right) \cdot P\left(E / E_1\right)+P\left(E_2\right) \cdot P\left(E / E_2\right)}\\ &=\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot 1}=\frac{\frac{1}{4}}{\frac{1}{4}+\frac{1}{2}}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3} \end{aligned}$$
Suppose that $6 \%$ of the people with blood group 0 are left handed and $10 \%$ of those with other blood groups are left handed, $30 \%$ of the people have blood group 0 . If a left handed person is selected at random, what is the probability that he/she will have blood group 0 ?
Blood group 'O' | Other than blood group 'O' | |
---|---|---|
I. Number of people | 30% | 70% |
II. Percentage of left handed people | 6% | 10% |
$$\begin{aligned} & E_1=\text { Event that the person selected is of blood group O } \\ & E_2=\text { Event that the person selected is of other than blood group O } \\ & \left(E_3\right)=\text { Event that selected person is left handed } \\ & \therefore \quad \begin{aligned} P\left(E_1\right)=0.30, P\left(E_2\right)=0.70 \\ P\left(E_3 / E_1\right)=0.06 \text { and } P\left(E_3 / E_2\right)=0.10 \end{aligned} \end{aligned}$$
$$\begin{aligned} &\text { By using Baye's theorem, }\\ &\begin{aligned} P\left(E_1 / E_3\right) & =\frac{P\left(E_1\right) \cdot P\left(E_3 / E_1\right)}{P\left(E_1\right) \cdot P\left(E_3 / E_1\right)+P\left(E_2\right) \cdot P\left(E_3 / E_2\right)} \\ & =\frac{0.30 \times 0.06}{0.30 \cdot 0.06+0.70 \cdot 0.10} \\ & =\frac{0.0180}{0.0180+0.0700} \\ & =\frac{0.0180}{0.0880}=\frac{180}{880}=\frac{9}{44} \end{aligned} \end{aligned}$$
If two natural numbers $r$ and $s$ are drawn one at a time, without replacement from the set $S=\{1,2,3, \ldots n\}$, then find $P(r \leq p / s \leq p)$, where $p \in S$.
$$\begin{aligned} & \because \text { Set } S=\{1,2,3, \ldots, n\} \\ & \therefore \quad P(r \leq p / S \leq p)=\frac{P(p \cap S)}{P(S)} \\ & \\ \end{aligned}$$
$=\frac{p-1}{n} \times \frac{n}{n-1}=\frac{p-1}{n-1}$
Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.
Let $X$ is the random variable score obtained when a die is thrown twice.
$$\begin{array}{lrl} \therefore & X & =1,2,3,4,5,6 \\ \text { Here, } & S & =\{(1,1),(1,2),(2,1),(2,2),(1,3),(2,3),(3,1),(3,2),(3,3), \ldots,(6,6)\} \\ \therefore & P(X & =1)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \\ & & P(X=2)=\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}=\frac{3}{36} \\ & P(X & =3)=\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}=\frac{5}{36} \end{array}$$
$$\begin{aligned} \text{Similarly,}\quad & P(X=4)=\frac{7}{36} \\ & P(X=5)=\frac{9}{36} \\ & P(X=6)=\frac{11}{36} \end{aligned}$$
So, the required distribution is,
$X$ | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
$P(X)$ | 1/36 | 3/36 | 5/36 | 7/36 | 9/36 | 11/36 |
$$\begin{aligned} &\text { Also, we know that, Mean }\{E(X)\}=\Sigma X P(X)\\ &=\frac{1}{36}+\frac{6}{36}+\frac{15}{36}+\frac{28}{36}+\frac{45}{36}+\frac{66}{36}=\frac{161}{36} \end{aligned}$$