ExamGOAL
Books
10
Subjective

A discrete random variable X has the probability distribution as given below

X 0.5 1 1.5 2
P(X) $k$ $k^2$ $2k^2$ $k$

(i) Find the value of $k$.

(ii) Determine the mean of the distribution.

Explanation

We have,

X 0.5 1 1.5 2
P(X) $k$ $k^2$ $2k^2$ $k$

$$\begin{aligned} &\text { (i) We know that, } \quad \sum_{i=1}^n P_i=1 \text {, where } P_i \geq 0\\ &\begin{array}{lr} \Rightarrow & P_1+P_2+P_3+P_4=1 \\ \Rightarrow & k+k^2+2 k^2+k=1 \\ \Rightarrow & 3 k^2+2 k-1=0 \\ \Rightarrow & 3 k^2+3 k-k-1=0 \\ \Rightarrow & 3 k(k+1)-1(k+1)=0 \\ \Rightarrow & (3 k-1)(k+1)=0 \\ \Rightarrow & k=1 / 3 \Rightarrow k=-1 \\ \text { Since, } & k \text { is } \geq 0 \Rightarrow k=1 / 3 \end{array} \end{aligned}$$

(ii) Mean of the distribution $(\mu)=E(X)=\sum_{i=1}^n x_i P_i$

$$ \begin{aligned} & =0.5(k)+1\left(k^2\right)+1.5\left(2 k^2\right)+2(k)=4 k^2+2.5 k \\ & =4 \cdot \frac{1}{9}+2.5 \cdot \frac{1}{3} \quad \left[\because k=\frac{1}{3}\right]\\ & =\frac{4+7.5}{9}=\frac{23}{18} \end{aligned}$$

11
Subjective

Prove that

(i) $P(A)=P(A \cap B)+P(A \cap \bar{B})$

(ii) $P(A \cup B)=P(A \cap B)+P(A \cap \bar{B})+P(\bar{A} \cap B)$

Explanation

(i) $\because \quad P(A)=P(A \cap B)+P(A \cap \bar{B})$

$$\begin{aligned} \therefore \quad \mathrm{RHS} & =P(A \cap B)+P(A \cap \bar{B}) \\ & =P(A) \cdot P(B)+P(A) \cdot P(\bar{B}) \\ & =P(A)[P(B)+P(\bar{B})] \\ & =P(A)[P(B)+1-P(B)] \quad [\because P(\bar{B})=1-P(B)]\\ & =P(A)=\mathrm{LHS}\quad\text{Hence proved.} \end{aligned}$$

$$\begin{aligned} &\begin{array}{lrl} \text { (ii) } \because P(A \cup B) =P(A \cap B)+P(A \cap \bar{B})+P(\bar{A} \cap B) \\ \therefore \quad R H S =P(A) \cdot P(B)+P(A) \cdot P(\bar{B})+P(\bar{A}) \cdot P(B) \end{array} \end{aligned}$$

$$ \begin{aligned} &\begin{aligned} & =P(A) \cdot P(B)+P(A) \cdot[1-P(B)]+[1-P(A)] P(B) \\ & =P(A) \cdot P(B)+P(A)-P(A) \cdot P(B)+P(B)-P(A) \cdot P(B) \\ & =P(A)+P(B)-P(A) \cdot P(B) \\ & =P(A)+P(B)-P(A \cap B) \\ & =P(A \cup B)=\mathrm{LHS} \quad\text { Hence proved. } \end{aligned}\\ \end{aligned}$$

12
Subjective

If $X$ is the number of tails in three tosses of a coin, then determine the standard deviation of $X$.

Explanation

$$\begin{aligned} &\text { Given that, random variable } X \text { is the number of tails in three tosses of a coin. }\\ &\begin{array}{l} \text { So, } & X=0,1,2,3 . \\ \Rightarrow & P(X=x)={ }^n C_x(p)^x q^{n-x}, \\ \text { where } & n=3, p=1 / 2, q=1 / 2 \text { and } x=0,1,2,3 \end{array} \end{aligned}$$

X 0 1 2 3
P(X) $\frac{1}{8}$
$\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$
XP(X) 0 $\frac{3}{8}$ $\frac{3}{4}$ $\frac{3}{8}$
X$^2$P(X) 0 $\frac{3}{8}$ $\frac{3}{2}$ $\frac{9}{8}$

We know that, $\operatorname{Var}(X)=E\left(X^2\right)-[E(X)]^2\quad\text{.... (i)}$

where, $E\left(X^2\right)=\sum_{i=1}^n x_i^2 P\left(x_i\right)$ and $E(X)=\sum_{i=1}^n x_i P\left(x_i\right)$

$$\begin{aligned} &\begin{array}{ll} \therefore & E\left(X^2\right)=\sum_{i=1}^n x_i^2 P\left(X_i\right)=0+\frac{3}{8}+\frac{3}{2}+\frac{9}{8}=\frac{24}{8}=3 \\ \text { and } & {[E(X)]^2=\left[\sum_{i=0}^n x_i^2 P\left(x_i\right)\right]^2=\left[0+\frac{3}{8}+\frac{3}{4}+\frac{3}{8}\right]^2=\left[\frac{12}{8}\right]^2=\frac{9}{4}} \\ \therefore & \operatorname{Var}(X)=3-\frac{9}{4}=\frac{3}{4}\quad\text{[using Eq. (i)]} \end{array}\\ &\text { and standard deviation of } X=\sqrt{\operatorname{Var}(X)}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2} \end{aligned}$$

13
Subjective

In a dice game, a player pays a stake of ₹ 1 for each throw of a die. She receives ₹ 5 , if the die shows a 3 , ₹ 2 , if the die shows a 1 or 6 and nothing otherwise, then what is the player's expected profit per throw over a long series of throws?

Explanation

Let X is the random variable of profit per throw.

X $-1$ 1 4
P(X) $\frac{1}{2}$
$\frac{1}{3}$ $\frac{1}{6}$

Since, she loss ₹ 1 on getting any of 2,4 or 5.

So, at $X=-1\quad,$ $$ P(X)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}$$

Similarly, at $X=1\quad$, $P(X)=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}\quad$ [if die shows of either 1 or 6 ]

and at $X=4, \quad P(X)=\frac{1}{6}$ [if die shows a 3]

$\therefore$ Player's expected profit $=E(X)=\Sigma X P(X)$

$=-1 \times \frac{1}{2}+1 \times \frac{1}{3}+4 \times \frac{1}{6}$

$=\frac{-3+2+4}{6}=\frac{3}{6}=\frac{1}{2}=$ ₹ 0.50

14
Subjective

Three dice are thrown at the same time. Find the probability of getting three two's, if it is known that the sum of the numbers on the dice was six.

Explanation

On a throw of three dice, we have sample space $[n(S)]=6^3=216$

Let $E_1$ is the event when the sum of numbers on the dice was six and $E_2$ is the event when three two's occurs.

$$\begin{array}{r} \Rightarrow \quad E_1=\{(1,1,4),(1,2,3),(1,3,2),(1,4,1),(2,1,3),(2,2,2),(2,3,1),(3,1,2), \\ (3,2,1),(4,1,1)\} \end{array}$$

$$\begin{array}{l} \Rightarrow & n\left(E_1\right) =10 \text { and } E_2=\{2,2,2\} \\ \Rightarrow & n\left(E_2\right)=1 \\ \text { Also, } & \left(E_1 \cap E_2\right)=1 \\ \therefore & P\left(E_2 / E_1\right)=\frac{P \cdot\left(E_1 \cap E_2\right)}{P\left(E_1\right)}=\frac{1 / 216}{10 / 216}=\frac{1}{10} \end{array}$$