Prove that
(i) $P(A)=P(A \cap B)+P(A \cap \bar{B})$
(ii) $P(A \cup B)=P(A \cap B)+P(A \cap \bar{B})+P(\bar{A} \cap B)$
(i) $\because \quad P(A)=P(A \cap B)+P(A \cap \bar{B})$
$$\begin{aligned} \therefore \quad \mathrm{RHS} & =P(A \cap B)+P(A \cap \bar{B}) \\ & =P(A) \cdot P(B)+P(A) \cdot P(\bar{B}) \\ & =P(A)[P(B)+P(\bar{B})] \\ & =P(A)[P(B)+1-P(B)] \quad [\because P(\bar{B})=1-P(B)]\\ & =P(A)=\mathrm{LHS}\quad\text{Hence proved.} \end{aligned}$$
$$\begin{aligned} &\begin{array}{lrl} \text { (ii) } \because P(A \cup B) =P(A \cap B)+P(A \cap \bar{B})+P(\bar{A} \cap B) \\ \therefore \quad R H S =P(A) \cdot P(B)+P(A) \cdot P(\bar{B})+P(\bar{A}) \cdot P(B) \end{array} \end{aligned}$$
$$ \begin{aligned} &\begin{aligned} & =P(A) \cdot P(B)+P(A) \cdot[1-P(B)]+[1-P(A)] P(B) \\ & =P(A) \cdot P(B)+P(A)-P(A) \cdot P(B)+P(B)-P(A) \cdot P(B) \\ & =P(A)+P(B)-P(A) \cdot P(B) \\ & =P(A)+P(B)-P(A \cap B) \\ & =P(A \cup B)=\mathrm{LHS} \quad\text { Hence proved. } \end{aligned}\\ \end{aligned}$$
If $X$ is the number of tails in three tosses of a coin, then determine the standard deviation of $X$.
$$\begin{aligned} &\text { Given that, random variable } X \text { is the number of tails in three tosses of a coin. }\\ &\begin{array}{l} \text { So, } & X=0,1,2,3 . \\ \Rightarrow & P(X=x)={ }^n C_x(p)^x q^{n-x}, \\ \text { where } & n=3, p=1 / 2, q=1 / 2 \text { and } x=0,1,2,3 \end{array} \end{aligned}$$
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P(X) | $\frac{1}{8}$ |
$\frac{3}{8}$ | $\frac{3}{8}$ | $\frac{1}{8}$ |
XP(X) | 0 | $\frac{3}{8}$ | $\frac{3}{4}$ | $\frac{3}{8}$ |
X$^2$P(X) | 0 | $\frac{3}{8}$ | $\frac{3}{2}$ | $\frac{9}{8}$ |
We know that, $\operatorname{Var}(X)=E\left(X^2\right)-[E(X)]^2\quad\text{.... (i)}$
where, $E\left(X^2\right)=\sum_{i=1}^n x_i^2 P\left(x_i\right)$ and $E(X)=\sum_{i=1}^n x_i P\left(x_i\right)$
$$\begin{aligned} &\begin{array}{ll} \therefore & E\left(X^2\right)=\sum_{i=1}^n x_i^2 P\left(X_i\right)=0+\frac{3}{8}+\frac{3}{2}+\frac{9}{8}=\frac{24}{8}=3 \\ \text { and } & {[E(X)]^2=\left[\sum_{i=0}^n x_i^2 P\left(x_i\right)\right]^2=\left[0+\frac{3}{8}+\frac{3}{4}+\frac{3}{8}\right]^2=\left[\frac{12}{8}\right]^2=\frac{9}{4}} \\ \therefore & \operatorname{Var}(X)=3-\frac{9}{4}=\frac{3}{4}\quad\text{[using Eq. (i)]} \end{array}\\ &\text { and standard deviation of } X=\sqrt{\operatorname{Var}(X)}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2} \end{aligned}$$
In a dice game, a player pays a stake of ₹ 1 for each throw of a die. She receives ₹ 5 , if the die shows a 3 , ₹ 2 , if the die shows a 1 or 6 and nothing otherwise, then what is the player's expected profit per throw over a long series of throws?
Let X is the random variable of profit per throw.
X | $-1$ | 1 | 4 |
---|---|---|---|
P(X) | $\frac{1}{2}$ |
$\frac{1}{3}$ | $\frac{1}{6}$ |
Since, she loss ₹ 1 on getting any of 2,4 or 5.
So, at $X=-1\quad,$ $$ P(X)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}$$
Similarly, at $X=1\quad$, $P(X)=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}\quad$ [if die shows of either 1 or 6 ]
and at $X=4, \quad P(X)=\frac{1}{6}$ [if die shows a 3]
$\therefore$ Player's expected profit $=E(X)=\Sigma X P(X)$
$=-1 \times \frac{1}{2}+1 \times \frac{1}{3}+4 \times \frac{1}{6}$
$=\frac{-3+2+4}{6}=\frac{3}{6}=\frac{1}{2}=$ ₹ 0.50
Three dice are thrown at the same time. Find the probability of getting three two's, if it is known that the sum of the numbers on the dice was six.
On a throw of three dice, we have sample space $[n(S)]=6^3=216$
Let $E_1$ is the event when the sum of numbers on the dice was six and $E_2$ is the event when three two's occurs.
$$\begin{array}{r} \Rightarrow \quad E_1=\{(1,1,4),(1,2,3),(1,3,2),(1,4,1),(2,1,3),(2,2,2),(2,3,1),(3,1,2), \\ (3,2,1),(4,1,1)\} \end{array}$$
$$\begin{array}{l} \Rightarrow & n\left(E_1\right) =10 \text { and } E_2=\{2,2,2\} \\ \Rightarrow & n\left(E_2\right)=1 \\ \text { Also, } & \left(E_1 \cap E_2\right)=1 \\ \therefore & P\left(E_2 / E_1\right)=\frac{P \cdot\left(E_1 \cap E_2\right)}{P\left(E_1\right)}=\frac{1 / 216}{10 / 216}=\frac{1}{10} \end{array}$$
Suppose 10000 tickets are sold in a lottery each for ₹ 1 . First prize is of ₹ 3000 and the second prize is of ₹ 2000 . There are three third prizes of ₹ 500 each. If you buy one ticket, then what is your expectation?
Let X is the random variable for the prize.
X | 0 | 500 | 2000 | 3000 |
---|---|---|---|---|
P(X) | $\frac{9995}{10000}$ |
$\frac{3}{10000}$ | $\frac{1}{10000}$ | $\frac{1}{10000}$ |
$$\begin{aligned} \text { Since, } \quad E(X) & =\Sigma X P(X) \\ \therefore \quad E(X) & =0 \times \frac{9995}{10000}+\frac{1500}{10000}+\frac{2000}{10000}+\frac{3000}{10000} \\ & =\frac{1500+2000+3000}{10000} \end{aligned}$$
$=\frac{6500}{10000}=\frac{13}{20}=$ ₹ 0.65