ExamGOAL
Books
17
Subjective

Refer to question 12 . What will be the minimum cost?

Explanation

Referring to solution 12 , we have minimise $Z=400 x+200 y$, subject to $5 x+2 y \geq 30$,

$$2 x+y \leq 15, x \leq y, x \geq 0, y \geq 0$$

On solving $x-y=0$ and $5 x+2 y=30$, we get

$$y=\frac{30}{7}, x=\frac{30}{7}$$

On solving $x-y=0$ and $2 x+y=15$, we get $x=5, y=5$

So, from the shaded feasible region it is clear that coordinates of corner points are $(0,15)$, $(5,5)$ and $\left(\frac{30}{7}, \frac{30}{7}\right)$.

Corner points Corresponding value of $Z=400x+200y$
(0, 15) 3000
(5, 5) 3000
$\left(\frac{30}{7}, \frac{30}{7}\right)$ $\begin{gathered}400 \times \frac{30}{7}+200 \times \frac{30}{7}=\frac{18000}{7} \\ =2571.43 \leftarrow \text { Minimum }\end{gathered}$

Hence, the minimum cost is ₹2571.43.

18
Subjective

Refer to question 13 . Solve the linear programming problem and determine the maximum profit to the manufacturer.

Explanation

Referring to solution 13 , we have Maximise $Z=100 x+170 y$ subject to

$$3 x+2 y \leq 3600, x+4 y \leq 1800, x \geq 0, y \geq 0$$

From the shaded feasible region it is clear that the coordinates of corner points are $(0,0)$, $(1200,0),(1080,180)$ and $(0,450)$.

On solving $x+4 y=1800$ and $3 x+2 y=3600$, we get $x=1080$ and $y=180$

Corner points Corresponding value of $Z=100x+170y$
(0, 0) 0
(1200, 0) $1200 \times 100=120000$
(1080, 180) $100 \times 1080+170 \times 180=138600 \leftarrow$ Maximum
(0, 450) $0+170\times450=76500$

Hence, the maximum profit to the manufacturer is 138600.

19
Subjective

Refer to question 14 . How many sweaters of each type should the company make in a day to get a maximum profit? What is the maximum profit?

Explanation

Referring to solution 14 , we have maximise $Z=200 x+120 y$ subject to $x+y \leq 300,3 x+y \leq 600, x-y \geq-100, x \geq 0, y \geq 0$.

On solving $x+y=300$ and $3 x+y=600$, we get

$$x=150, y=150$$

On solving $x-y=-100$ and $x+y=300$, we get

$$x=100, y=200$$

From the shaded feasible region it is clear that coordinates of corner points are $(0,0)$, $(200,0),(150,150),(100,200)$ and $(0,100)$.

Corner points Corresponding value of $Z=100x+120y$
(0, 0) 0
(200, 0) 40000
(150, 150) $150 \times 200+120 \times 150=48000 \leftarrow$ Maximum
(100, 200) $100\times200+120\times200=44000$
(0, 100) $120\times100=12000$

Hence, 150 sweaters of each type made by company and maximum profit = ₹ $48000$.

20
Subjective

Refer to question 15. Determine the maximum distance that the man can travel.

Explanation

Referring to solution 15 , we have

Maximise $Z=x+y$, subject to

$$2 x+3 y \leq 120,8 x+5 y \leq 400, x \geq 0, y \geq 0$$

On solving, we get

$$\begin{aligned} 8 x+5 y & =400 \text { and } 2 x+3 y=120, \text { we get } \\ x & =\frac{300}{7}, y=\frac{80}{7} \end{aligned}$$

From the shaded feasible region, it is clear that coordinates of corner points are $(0,0)$, $(50,0),\left(\frac{300}{7}, \frac{80}{7}\right)$ and $(0,40)$.

Corner points Corresponding value of $Z=x+y$
(0, 0) 0
(50, 0) 50
$\frac{300}{7}, \frac{80}{7}$
$\frac{380}{7}=54 \frac{2}{7} \mathrm{~km} \leftarrow$ Maximum
(0, 40) 40

Hence, the maximum distance that the man can travel is $54 \frac{2}{7} \mathrm{~km}$.

21
Subjective

Maximise $Z=x+y$ subject to $x+4 y \leq 8,2 x+3 y \leq 12,3 x+y \leq 9$, $x \geq 0$ and $y \geq 0$.

Explanation

Here, the given LPP is,

Maximise $Z=x+y$ subject to,

$$x+4 y \leq 8,2 x+3 y \leq 12,3 x+y \leq 9, x \geq 0, y \geq 0$$

On solving $x+4 y=8$ and $3 x+y=9$, we get

$$x=\frac{28}{11}, y=\frac{15}{11}$$

From the feasible region, it is clear that coordinates of corner points are $(0,0),(3,0)$, $\left(\frac{28}{11}, \frac{15}{11}\right)$ and $(0,2)$.

Corner points Corresponding value of $Z=x+y$
(0, 0) 0
(3, 0) 3
$\left(\frac{28}{11}, \frac{15}{11}\right)$
$\frac{43}{11}=3 \frac{10}{11} \mathrm{~km} \leftarrow$ Maximum
(0, 2) 2

Hence, the maximum value is $3 \frac{10}{11}$.