$\int_0^{\pi / 2} \frac{\tan x}{1+m^2 \tan ^2 x} d x$
$$\begin{aligned} \text{Let}\quad I & =\int_0^{\pi / 2} \frac{\tan x d x}{1+m^2 \tan ^2 x} d x \\ & =\int_0^{\pi / 2} \frac{\frac{\sin x}{\cos x}}{1+m^2 \cdot \frac{\sin ^2 x}{\cos ^2 x}} d x \\ & =\int_0^{\pi / 2} \frac{\frac{\sin x}{\cos x}}{\frac{\cos ^2 x+m^2 \sin ^2 x}{\cos ^2 x}} d x \\ & =\int_0^{\pi / 2} \frac{\sin x \cos x d x}{1-\sin ^2 x+m^2 \sin ^2 x} d x \\ & =\int_0^{\pi / 2} \frac{\sin x \cos x}{1-\sin ^2 x\left(1-m^2\right)} d x \end{aligned}$$
$$\begin{array}{lr} \text { Put } & \sin ^2 x=t \\ \Rightarrow & 2 \sin x \cos x d x=d t \end{array}$$
$$\begin{aligned} \therefore\quad I & =\frac{1}{2} \int_0^1 \frac{d t}{1-t\left(1-m^2\right)} \\ & =\frac{1}{2}\left[-\log \left|1-t\left(1-m^2\right)\right| \cdot \frac{1}{1-m^2}\right]_0^1 \\ & =\frac{1}{2}\left[-\log \left|1-1+m^2\right| \cdot \frac{1}{1+m^2}+\log |1| \cdot \frac{1}{1-m^2}\right] \\ & =\frac{1}{2}\left[-\log \left|m^2\right| \cdot \frac{1}{1-m^2}\right]=\frac{2}{2} \cdot \frac{\log m}{\left(m^2-1\right)} \\ & =\log \frac{m}{m^2-1} \end{aligned}$$
$\int_1^2 \frac{d x}{\sqrt{(x-1)(2-x)}}$
$$\begin{aligned} \text{Let}\quad I & =\int_1^2 \frac{d x}{\sqrt{(x-1)(2-x)}}=\int_1^2 \frac{d x}{\sqrt{2 x-x^2-2+x}} \\ & =\int_1^2 \frac{d x}{\sqrt{-\left(x^2-3 x+2\right)}} \end{aligned}$$
$$\begin{aligned} & =\int_1^2 \frac{d x}{\sqrt{-\left[x^2-2 \cdot \frac{3}{2} x+\left(\frac{3}{2}\right)^2+2-\frac{9}{4}\right]}} \\ & =\int_1^2 \frac{d x}{\sqrt{-\left\{\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2\right\}}} \\ & =\int_1^2 \frac{d x}{\sqrt{\left(\frac{1}{2}\right)^2-\left(x-\frac{3}{2}\right)^2}}=\left[\sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{1}{2}}\right)\right]_1^2 \end{aligned}$$
$$\begin{aligned} & =\left[\sin ^{-1}(2 x-3)\right]_1^2=\sin ^{-1} 1-\sin ^{-1}(-1) \\ & =\frac{\pi}{2}+\frac{\pi}{2} \quad\left[\because \sin \frac{\pi}{2}=1 \text { and } \sin (-\theta)=-\sin \theta\right] \\ & =\pi \end{aligned}$$
$$\int_0^1 \frac{x}{\sqrt{1+x^2}} d x$$
Let $I=\int_0^1 \frac{x}{\sqrt{1+x^2}} d x$
Put $1+x^2=t^2$
$$\begin{array}{lr} \Rightarrow & 2 x d x=2 t d t \\ \Rightarrow & x d x=t d t \end{array}$$
$$\begin{aligned} \therefore\quad I & =\int_1^{\sqrt{2}} \frac{t d t}{t} \\ & =[t]_1^{\sqrt{2}}=\sqrt{2}-1 \end{aligned}$$
$\int_0^\pi x \sin x \cos ^2 x d x$
Let $$I=\int_0^\pi x \sin x \cos ^2 x d x\quad\text{.... (i)}$$
and $$I=\int_0^\pi(\pi-x) \sin (\pi-x) \cos ^2(\pi-x) d x$$
$\Rightarrow \quad I=\int_0^\pi(\pi-x) \sin x \cos ^2 x d x\quad\text{.... (ii)}$
On adding Eqs. (i) and (ii), we get
$$2 I=\int_0^\pi \pi \sin x \cos ^2 x d x$$
$$\begin{array}{ll} \text { Put } & \cos x=t \\ \Rightarrow & -\sin x d x=d t \end{array}$$
As $x \rightarrow 0$, then $t \rightarrow 1$
and $x \rightarrow \pi$, then $t \rightarrow-1$
$\therefore\quad I=-\pi \int_1^{-1} t^2 d t \Rightarrow I=-\pi\left[\frac{t^3}{3}\right]_1^{-1}$
$\Rightarrow\quad 2 I=-\frac{\pi}{3}[-1-1] \Rightarrow 2 I=\frac{2 \pi}{3}$
$\therefore \quad I=\frac{\pi}{3}$
$\int_0^{1 / 2} \frac{d x}{\left(1+x^2\right) \sqrt{1-x^2}}$
Let $I=\int_0^{1 / 2} \frac{d x}{\left(1+x^2\right) \sqrt{1-x^2}}$
Put $x=\sin \theta$
$\Rightarrow \quad d x=\cos \theta d \theta$
As $\quad x \rightarrow 0$, then $\theta \rightarrow 0$
and $x \rightarrow \frac{1}{2}$, then $\theta \rightarrow \frac{\pi}{6}$
$$\begin{aligned} \therefore\quad I & =\int_0^{\pi / 6} \frac{\cos \theta}{\left(1+\sin ^2 \theta\right) \cos \theta} d \theta=\int_0^{\pi / 6} \frac{1}{1+\sin ^2 \theta} d \theta \\ & =\int_0^{\pi / 6} \frac{1}{\cos ^2 \theta\left(\sec ^2 \theta+\tan ^2 \theta\right)} d \theta \\ & =\int_0^{\pi / 6} \frac{\sec ^2 \theta}{\sec ^2 \theta+\tan ^2 \theta} d \theta \\ & =\int_0^{\pi / 6} \frac{\sec ^2 \theta}{1+\tan ^2 \theta+\tan ^2 \theta} d \theta \\ & =\int_0^{\pi / 6} \frac{\sec ^2 \theta}{1+2 \tan ^2 \theta} d \theta \end{aligned}$$
$$\begin{aligned} &\text { Again, put } \quad \tan \theta =t \\ & \Rightarrow\quad\sec ^2 \theta d \theta =d t \end{aligned}$$
As $\theta \rightarrow 0$, then $t \rightarrow 0$
and $\theta \rightarrow \frac{\pi}{6}$, then $t \rightarrow \frac{1}{\sqrt{3}}$
$$\begin{aligned} \therefore\quad I & =\int_0^{1 / \sqrt{3}} \frac{d t}{1+2 t^2}=\frac{1}{2} \int_0^{1 / \sqrt{3}} \frac{d t}{\left(\frac{1}{\sqrt{2}}\right)^2+t^2} \\ & =\frac{1}{2} \cdot \frac{1}{1 / \sqrt{2}}\left[\tan ^{-1} \frac{t}{\frac{1}{\sqrt{2}}}\right]_0^{1 / \sqrt{3}}=\frac{1}{\sqrt{2}}\left[\tan ^{-1}(\sqrt{2} t)\right]_0^{1 / \sqrt{3}} \\ & =\frac{1}{\sqrt{2}}\left[\tan ^{-1} \sqrt{\frac{2}{3}}-0\right]=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\sqrt{\frac{2}{3}}\right) \end{aligned}$$