Why should the monomer used in addition polymerisation through free radical pathway be very pure?
During free radical polymerisation, monomers should be very pure because even very trace amounts of impurities may act as inhibitors which leads to the formation of polymers with shorter length.
Match the polymer of Column I with correct monomer of Column II.
Column I | Column II | ||
---|---|---|---|
A. | High density polyethene | 1. | Isoprene |
B. | Neoprene | 2. | Tetrafluoro ethene |
C. | Natural rubber | 3. | Chloroprene |
D. | Teflon | 4. | Acrylonitrile |
E. | Acrilan | 5. | Ethene |
A. $\rightarrow$ (5) B. $\rightarrow$ (3) C. $\rightarrow$ (1) D. $\rightarrow$ (2) E. $\rightarrow$ (4)
Column I represents various kind of polymer and Column II represents their monomer units. Correct matching can be done as
Column I | Column II | ||
---|---|---|---|
A. | High density polyethene | 1. | Ethene |
B. | Neoprene | 2. | Chloroprene |
C. | Natural rubber | 3. | Isoprene |
D. | Teflon | 4. | Tetrafluoroethene |
E. | Acrilan | 5. | Acrylonitrile |
Match the polymers given in Column I with their chemical names given in Column II.
Column I | Column II | ||
---|---|---|---|
A. | Nylon-6 | 1. | Polyvinyl chloride |
B. | PVC | 2. | Polyacrylonitrile |
C. | Acrilan | 3. | Polycaprocactum |
D. | Natural rubber | 4. | Low density polythene |
E. | LDP | 5. | cis-polyisoprene |
A. $\rightarrow$ (3) B. $\rightarrow(1)$ C. $\rightarrow$ (2) D. $\rightarrow(5)$ E. $\rightarrow$ (4)
Column I represents various polymers and Column II represents their chemical names.
Column I | Column II | ||
---|---|---|---|
A. | Nylon-6 | 1. | Polycaprolactum |
B. | PVC | 2. | Polyvinyl chloride |
C. | Acrilan | 3. | Polyacrylonitrile |
D. | Natural rubber | 4. | cis-polyisoprene |
E. | LDP | 5. | Low density polythene |
Match the polymers given in Column I with their commercial names given in Column II.
Column I | Column II | ||
---|---|---|---|
A. | Polyester of glycol and phthalic acid | 1. | Novolac |
B. | Copolymer of 1, 3-butadiene and styrene | 2. | Glyptal |
C. | Phenol and formaldehyde resin | 3. | Buna-S |
D. | Polyester of glycol and terephthalic acid | 4. | Buna-N |
E. | Copolymer of 1,3- butadiene and acrylonitrile | 5. | Dacron |
A. $\rightarrow(2)$ B. $\rightarrow$ (3) C. $\rightarrow$ (1) D. $\rightarrow$ (5) E. $\rightarrow$ (4)
Column I represents monomers of polymer and Column II represents their commercial name.
Column I | Column II | ||
---|---|---|---|
A. | Polyester of glycol and phthalic acid | 1. | Glyptal |
B. | Copolymer of 1, 3-butadiene and styrene | 2. | Buna-S |
C. | Phenol and formaldehyde resin | 3. | Novloac |
D. | Polyester of glycol and terephthalic acid | 4. | Dacron |
E. | Copolymer of 1,3- butadiene and acrylonitrile | 5. | Buna-N |
Match the polymers given in Column I with their main applications given in Column II.
Column I | Column II | ||
---|---|---|---|
A. | Bakelite | 1. | Unbreakable crockery |
B. | Low density polyethene | 2. | Non-stick cookwares |
C. | Melamine-formaldehyde resin | 3. | Packaging material for shock absorbance |
D. | Nylon-6 | 4. | Electrical switches |
E. | Polytetrafluoroethane | 5. | Squeeze bottles |
F. | Polystyrene | 6. | Tyre, cords |
A. $\rightarrow(4)$ B. $\rightarrow$ (5) C. $\rightarrow$ (1) D. $\rightarrow(6)$ E. $\rightarrow(4)$ F. $\rightarrow(3)$
Column I | Column II | ||
---|---|---|---|
A. | Bakelite | 1. | Electrical switches |
B. | Low density polyethene | 2. | Squeeze bottles |
C. | Melamine-formaldehyde resin | 3. | Unbreakable crockery |
D. | Nylon-6 | 4. | Tyre, cords |
E. | Polytetrafluoroethane | 5. | Non-stick cookwares |
F. | Polystyrene | 6. | Packaging material for shock absorbance |