Match the acids given in Column I with their correct IUPAC names given in Column II.
Column I (Acids) |
Column II (IUPAC names) |
||
---|---|---|---|
A. | Phthalic acid | 1. | Hexane-1, 6-dioic acid |
B. | Oxalic acid | 2. | Benzene-1, 2-dicarboxylic acid |
C. | Succinic acid | 3. | Pentane-1, 5-dioic acid |
D. | Adipic acid | 4. | Butane-1, 4-dioic acid |
E. | Glutaric acid | 5. | Ethane-1, 2-dioic acid |
$\begin{array}{llll}\text { A. } \rightarrow(2) & \text { B. } \rightarrow(5) & \text { C. } \rightarrow(4) & \text { D. } \rightarrow(1) \\ \text { E. } \rightarrow(3)\end{array}$
Acids | IUPAC names | Structure | |
---|---|---|---|
A. | Phthalic acid | Benzene-1, 2-dicarboxylic acid | ![]() |
B. | Oxalic acid | Ethane-1, 2-dioic acid | ![]() |
C. | Succinic acid | Butane-1, 4-dioic acid | ![]() |
D. | Adipic acid | Hexane-1, 6-dioic acid | ![]() |
E. | Glutaric acid | Pentane-1, 5-dioic acid | ![]() |
Match the reactions given in Column I with the suitable reagents given in Column II.
Column I (Reactions) |
Column II (Reagents) |
||
---|---|---|---|
A. | Benzophenone $\to$ Diphenylmethane | 1. | LiAlH$_4$ |
B. | Benzaldehyde $\to$ 1-phenylethanol | 2. | DIBAL-H |
C. | Cyclohexanone $\to$ Cyclohexanol | 3. | Zn(Hg)/Conc. HCl |
D. | Phenyl benzoate $\to$ Benzaldehyde | 4. | CH$_3$MgBr |
A. $\rightarrow(3)$ B. $\rightarrow$ (4) C. $\rightarrow$ (1) D. $\rightarrow(2)$
Reactions | Reagents | ||
---|---|---|---|
A. | ![]() |
1. | Zn(Hg)/Conc. HCl |
B. | ![]() |
2. | CH$_3$MgBr |
C. | ![]() |
3. | LiAlH$_4$ |
D. | ![]() |
4. | DIBAL-H |
Match the example given in Column I with the name of the reaction in Column II.
Column I (Example) |
Column II (Reaction) |
||
---|---|---|---|
A. | ![]() |
1. | Friedel-Crafts acylation |
B. | ![]() |
2. | HVZ reaction |
C. | ![]() |
3. | Aldol condensation |
D. | ![]() |
4. | Cannizzaro's reaction |
E. | $\mathrm{CH}_3-\mathrm{CN} \xrightarrow[\text { (ii) } \mathrm{H}_2 \mathrm{O} / \mathrm{H}^{+}]{\text {(i) } \mathrm{SnCl}_2 / \mathrm{HCl}} \mathrm{CH}_3 \mathrm{CHO}$ | 5. | Rosenmund's reduction |
F. | $2 \mathrm{CH}_3 \mathrm{CHO} \xrightarrow{\mathrm{NaOH}} \mathrm{CH}_3-\mathrm{CH}=\mathrm{CHCHO}$ | 6. | Stephen's reaction |
A. $\rightarrow$ (5) B. $\rightarrow(4)$ C. $\rightarrow(1)$ D. $\rightarrow$ (2) E. $\rightarrow$ (6) F. $\rightarrow(3)$
Example |
Name of the Reaction |
||
---|---|---|---|
A. | ![]() |
1. | Rosenmund's reduction |
B. | ![]() |
2. | Cannizzaro's reaction |
C. | ![]() |
3. | Friedel-Crafts acylation |
D. | ![]() |
4. | HVZ reaction |
E. | $\mathrm{CH}_3-\mathrm{CN} \xrightarrow[\text { (ii) } \mathrm{H}_2 \mathrm{O} / \mathrm{H}^{+}]{\text {(i) } \mathrm{SnCl}_2 / \mathrm{HCl}} \mathrm{CH}_3 \mathrm{CHO}$ | 5. | Stephen's reduction |
F. | $2 \mathrm{CH}_3 \mathrm{CHO} \xrightarrow{\mathrm{NaOH}} \mathrm{CH}_3-\mathrm{CH}=\mathrm{CHCHO}$ | 6. | Aldol condensation |
Assertion (A) Formaldehyde is a planar molecule.
Reason (R) It contains $\mathrm{sp}^2$ hybridised carbon atom.
Assertion (A) Compounds containing - $\mathrm{CH0}$ group are easily oxidised to corresponding carboxylic acids.
Reason (R) Carboxylic acids can be reduced to alcohols by treatment with $\mathrm{LiAlH}_4$.