Write balanced chemical equation for the following reactions.
(a) Permanganate ion $\left(\mathrm{MnO}_4^{-}\right)$reacts with sulphur dioxide gas in acidic medium to produce $\mathrm{Mn}^{2+}$ and hydrogen sulphate ion. (Balance by ion electron method)
(b) Reaction of liquid hydrazine $\left(\mathrm{N}_2 \mathrm{H}_4\right)$ with chlorate ion $\left(\mathrm{ClO}_3^{-}\right)$in basic medium produces nitric oxide gas and chloride ion in gaseous state. (Balance by oxidation number method)
(c) Dichlorine heptaoxide $\left(\mathrm{Cl}_2 \mathrm{O}_7\right)$ in gaseous state combines with an aqueous solution of hydrogen peroxide in acidic medium to give chlorite ion $\left(\mathrm{ClO}_2^{-}\right)$and oxygen gas. (Balance by ion electron method)
(a) Ion electron method Write the skeleton equation for the given reaction. $\mathrm{MnO}_4^{-}(a q)+\mathrm{SO}_2(g) \longrightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{HSO}_4^{-}(a q)$
Find out the elements which undergo change in O.N.
Divide the given skeleton into two half equations.
Reduction half equation : $\mathrm{MnO}_4^{-}(\mathrm{aq}) \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aq})$
Oxidation half equation: $\mathrm{SO}_2(\mathrm{~g}) \longrightarrow \mathrm{HSO}_4^{-}(a q)$
To balance reduction half equation
In acidic medium, balance H and O -atoms
$$\mathrm{MnO}_4^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{H}_2 \mathrm{O}(l)$$
To balance the complete reaction
$$\begin{aligned} & 2 \mathrm{MnO}_4(a q)+16 \mathrm{H}^{+}(a q)+10 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(a q)+8 \mathrm{H}_2 \mathrm{O}(l) \\ & 5 \mathrm{SO}_2(g)+10 \mathrm{H}_2 \mathrm{O}(l) \longrightarrow 5 \mathrm{HSO}_4^{-}(a q)+15 \mathrm{H}^{+}(a q)+10 e^{-} \end{aligned}$$
$2 \mathrm{MnO}_4^{-}(a q)+5 \mathrm{SO}_2(g)+2 \mathrm{H}_2 \mathrm{O}(l)+\mathrm{H}^{+}(a q) \rightarrow 2 \mathrm{Mn}^{2+}(a q)+5 \mathrm{HSO}_4^{-}(a q)$
(b) Oxidation number method Write the skeleton equation for the given reaction.
$$\mathrm{N}_2 \mathrm{H}_4(l)+\mathrm{ClO}_3^{-}(a q) \longrightarrow \mathrm{NO}(g)+\mathrm{Cl}^{-}(g)$$
O.N. increases by 4 per N -atom
Multiply NO by 2 because in $\mathrm{N}_2 \mathrm{H}_4$ there are 2 N atoms
$$\mathrm{N}_2 \mathrm{H}_4(l)+\mathrm{ClO}_3^{-}(a q) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}^{-}(a q)$$
Total increase in O.N. of $\mathrm{N}=2 \times 4=8$ ( $8 \mathrm{e}^{-}$ lost) Total decrease in $\mathrm{O} . \mathrm{N}$. of $\mathrm{Cl}=1 \times 6=6\left(6 e^{-}\right.$gain $)$
Therefore, to balance increase or decrease in O.N. multiply $\mathrm{N}_2 \mathrm{H}_4$ by $3,2 \mathrm{NO}$ by 3 and $\mathrm{ClO}_3^{-}, \mathrm{Cl}^{-}$ by 4
$$3 \mathrm{~N}_2 \mathrm{H}_4(l)+4 \mathrm{ClO}_3^{-}(a q) \longrightarrow 6 \mathrm{NO}(g)+4 \mathrm{Cl}^{-}(a q)$$
Balance O and H -atoms by adding $6 \mathrm{H}_2 \mathrm{O}$ to RHS
$$3 \mathrm{~N}_2 \mathrm{H}_4(l)+4 \mathrm{ClO}_3^{-}(a q) \longrightarrow 6 \mathrm{NO}(g)+4 \mathrm{Cl}^{-}(a q)+6 \mathrm{H}_2 \mathrm{O}(l)$$
(c) Ion electron method Write the skeleton equation for the given reaction.
$$\mathrm{Cl}_2 \mathrm{O}_7(g)+\mathrm{H}_2 \mathrm{O}_2(\mathrm{aq}) \longrightarrow \mathrm{ClO}_2^{-}(\mathrm{aq})+\mathrm{O}_2(g)$$
Find out the elements which undergo a change in O.N.
Divide the given skeleton equation into two half equations.
Reduction half equation : $\mathrm{Cl}_2 \mathrm{O}_7 \longrightarrow \mathrm{ClO}_2^{-}$
Oxidation half equation : $\mathrm{H}_2 \mathrm{O}_2 \longrightarrow \mathrm{O}_2$
To balance the reduction half equation
$$\mathrm{Cl}_2 \mathrm{O}_7(g)+6 \mathrm{H}^{+}(a q)+8 \mathrm{e}^{-} \longrightarrow 2 \mathrm{ClO}_2^{-}(a q)+3 \mathrm{H}_2 \mathrm{O}(l)$$
To balance the oxidation half equation
$$\mathrm{H}_2 \mathrm{O}_2(\mathrm{aq}) \longrightarrow \mathrm{O}_2(g)+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$$
To balance the complete reaction
$$\begin{aligned} \mathrm{Cl}_2 \mathrm{O}_7(g)+6 \mathrm{H}^{+}(a q)+8 \mathrm{e}^{-} & \longrightarrow 2 \mathrm{ClO}_2^{-}(a q)+3 \mathrm{H}_2 \mathrm{O}(l) \\ 4 \mathrm{H}_2 \mathrm{O}_2(a q) & \longrightarrow \mathrm{O}_2(g)+8 \mathrm{H}^{+}(a q)+8 e^{-} \end{aligned}$$
$$ \mathrm{Cl}_2 \mathrm{O}_7(g)+4 \mathrm{H}_2 \mathrm{O}_2(a q) \longrightarrow 2 \mathrm{ClO}_2^{-}(a q)+3 \mathrm{H}_2 \mathrm{O}(l)+4 \mathrm{O}_2(g)+2 \mathrm{H}^{+}+(a q)$$
This represents the balanced redox reaction.
Calculate the oxidation number of phosphorus in the following species.
(a) $\mathrm{HPO}_3^{2-}$
(b) $\mathrm{PO}_4^{3-}$
(a) Suppose that the $\mathrm{O} . \mathrm{N}$. of P in $\mathrm{HPO}_3^{2-}$ be $x$.
$$\begin{aligned} \text{Then,}\quad 1+x+3(-2) & =-2 \\ \text{or,}\quad x+1-6 & =-2 \\ \text{or,}\quad x & =+3 \end{aligned}$$
(b) Suppose that the O.N. of P in $\mathrm{PO}_4^{3-}$ be $x$.
Then, $x+4(-2)=-3$
or, $x-8=-3$
or, $x=+5$
Calculate the oxidation number of each sulphur atom in the following compounds.
(a) $\mathrm{Na}_2 \mathrm{~S}_2 \mathrm{O}_3$
(b) $\mathrm{Na}_2 \mathrm{~S}_4 \mathrm{O}_6$
(c) $\mathrm{Na}_2 \mathrm{SO}_3$
(d) $\mathrm{Na}_2 \mathrm{SO}_4$
The oxidation number of each sulphur atom in the following compounds are given below
(a) $\mathrm{Na}_2 \mathrm{~S}_2 \mathrm{O}_3$ Let us consider the structure of $\mathrm{Na}_2 \mathrm{~S}_2 \mathrm{O}_3$.
There is a coordinate bond between two sulphur atoms. The oxidation number of acceptor S -atom is -2 . Let, the oxidation number of other S -atom be $x$.
$$\mathrm{\mathop {2( + 1)}\limits_{For\,Na} + \mathop {3 \times ( - 2)}\limits_{For\,O - atoms} + x + \mathop {1( - 2) = 0}\limits_{For\,coordinate\,S - atom}}$$
$x=+6$
Therefore, the two sulphur atoms in $\mathrm{Na}_2 \mathrm{~S}_2 \mathrm{O}_3$ have -2 and +6 oxidation number.
(b) $\mathrm{Na}_2 \mathrm{~S}_4 \mathrm{O}_6$ Let us consider the structure of $\mathrm{Na}_2 \mathrm{~S}_4 \mathrm{O}_6$.
In this structure, two central sulphur atoms have zero oxidation number because electron pair forming the S-S bond remain in the centre. Let, the oxidation number of (remaining S-atoms) S-atom be $x$.
$$\mathrm{\mathop {2( + 1)}\limits_{For\,Na} + \mathop {6\,( - 2)}\limits_{For\,O} + 2x + \mathop {2(0) = 0}\limits_{}}$$
$2-12+2 x=0$ or $x=+\frac{10}{2}=+5$
Therefore, the two central S-atoms have zero oxidation state and two terminal S-atoms have +5 oxidation state each.
(c) $\mathrm{Na}_2 \mathrm{SO}_3$ Let the oxidation number of S in $\mathrm{Na}_2 \mathrm{SO}_3$ be $x$.
$$2(+1)+x+3(-2)=0 \text { or } x=+4$$
(d) $\mathrm{Na}_2 \mathrm{SO}_4$ Let the oxidation number of S be $x$.
$$2(+1)+x+4(-2)=0 \text { or } x=+6$$
Balance the following equations by the oxidation number method.
(a) $\mathrm{Fe}^{2+}+\mathrm{H}^{+}+\mathrm{Cr}_2 \mathrm{O}_7^{-2} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_2 \mathrm{O}$
(b) $\mathrm{I}_2+\mathrm{NO}_3^{-} \longrightarrow \mathrm{NO}_2+\mathrm{IO}_3^{-}$
(c) $\mathrm{I}_2+\mathrm{S}_2 \mathrm{O}_3^{2-} \longrightarrow \mathrm{I}^{-}+\mathrm{S}_4 \mathrm{O}_6^{2-}$
(d) $\mathrm{MnO}_2+\mathrm{C}_2 \mathrm{O}_4^{2-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_2$
Oxidation number method
(a)
Balance increase and decrease in oxidation number.
$$6 \mathrm{Fe}^{2+}+\mathrm{H}^{+}+\mathrm{Cr}_2 \mathrm{O}_7^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+\mathrm{H}_2 \mathrm{O}$$
Balance charge by multiplying $\mathrm{H}^{+}$by 14.
$$6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+}+\mathrm{Cr}_2 \mathrm{O}_7^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+\mathrm{H}_2 \mathrm{O}$$
Balance H and O -atoms by multiplying $\mathrm{H}_2 \mathrm{O}$ by 7 .
$$6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+}+\mathrm{Cr}_2 \mathrm{O}_7^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_2 \mathrm{O}$$
This represents a balanced redox reaction.
(b)
Balance increase and decrease in oxidation number
$$\mathrm{I}_2+10 \mathrm{NO}_3^{-} \longrightarrow 10 \mathrm{NO}_2+2 \mathrm{IO}_3^{-}$$
Balance charge by writing $8 \mathrm{H}^{+}$in LHS of the equation.
$$\mathrm{I}_2+10 \mathrm{NO}_3^{-}+8 \mathrm{H}^{+} \longrightarrow 10 \mathrm{NO}_2+2 \mathrm{IO}_3^{-}$$
Balance H -atoms by writing $4 \mathrm{H}_2 \mathrm{O}$ in RHS of the equation.
$$\mathrm{I}_2+10 \mathrm{NO}_3^{-}+8 \mathrm{H}^{+} \longrightarrow 10 \mathrm{NO}_2+2 \mathrm{IO}_3^{-}+4 \mathrm{H}_2 \mathrm{O}$$
Oxygen atoms are automatically balanced. This represents a balanced redox reaction.
(c)
(Multiply $\mathrm{S}_2 \mathrm{O}_3^{2-}$ by 2 because there are 4 S -atoms in $\mathrm{S}_4 \mathrm{O}_6^{2-}$ ion.)
Increase and decrease in oxidation number is already balanced. Charge and oxygen atoms are also balanced.
This represents a balanced redox reaction.
(d)
Increase and decrease in oxidation number is already balanced.
Add $4 \mathrm{H}^{+}$ towards LHS of the equation to balance charge.
$$\mathrm{MnO}_2+\mathrm{C}_2 \mathrm{O}_4^{2-}+4 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+2 \mathrm{CO}_2$$
Add $2 \mathrm{H}_2 \mathrm{O}$ towards RHS of the equation to balance H -atoms
$$\mathrm{MnO}_2+\mathrm{C}_2 \mathrm{O}_4^{2-}+4 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+2 \mathrm{CO}_2+2 \mathrm{H}_2 \mathrm{O} $$
This represents a balanced redox reaction.
Identify the redox reaction out of the following reactions and identify the oxidising and reducing agents in them.
(a) $3 \mathrm{HCl}(a q)+\mathrm{HNO}_3(a q) \longrightarrow \mathrm{Cl}_2(g)+\mathrm{NOCl}(g)+2 \mathrm{H}_2 \mathrm{O}(l)$
(b) $\mathrm{HgCl}_2(a q)+2 \mathrm{KI}(a q) \longrightarrow \mathrm{HgI}_2(s)+2 \mathrm{KCl}(a q)$
(c) $\mathrm{Fe}_2 \mathrm{O}_3(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \xrightarrow{\Delta} 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_2(\mathrm{~g})$
(d) $\mathrm{PCl}_3(l)+3 \mathrm{H}_2 \mathrm{O}(l) \longrightarrow 3 \mathrm{HCl}(a q)+\mathrm{H}_2 \mathrm{PO}_3(a q)$
(e) $4 \mathrm{NH}_3(a q)+3 \mathrm{O}_2(g) \longrightarrow 2 \mathrm{~N}_2(g)+6 \mathrm{H}_2 \mathrm{O}(\mathrm{g})$
(a) Writing the O.N. on each atom above its symbol, then
Here, the $\mathrm{O} . \mathrm{N}$. of Cl increases from -1 in HCl to O in $\mathrm{Cl}_2$, therefore, $\mathrm{Cl}^{-}$is oxidised and hence HCl acts as the reducing agent.
The O.N. of N decreases from +5 in $\mathrm{HNO}_3$ to +3 in NOCl , therefore, $\mathrm{HNO}_3$ acts as the oxidising agent.
Thus, this reaction is a redox reaction.
(b) Writing the O.N. of each atom above its symbol, we have,
Here, the O.N. of none of the atoms undergo a change, therefore, this reaction is not a redox reaction.
(c)
Here, O.N. of Fe decreases from +3 in $\mathrm{Fe}_2 \mathrm{O}_3$ to 0 in Fe , therefore, $\mathrm{Fe}_2 \mathrm{O}_3$ acts as an oxidising agent. Further, O.N. of C increases from +2 in CO to +4 in $\mathrm{CO}_2$, therefore, CO acts as a reducing agent.
Thus, this reaction is an example of redox reaction.
(d) Writing the O.N. of each atom above its symbol, then
Here, O.N. of none of the atoms undergo a change, therefore, this reaction is not a redox reaction.
(e) Writing the O.N. of each atom above its symbol, then
Here, O.N. of N increases from -3 to 0 in $\mathrm{N}_2$, therefore, $\mathrm{NH}_3$ acts as a reducing agent. Further, $\mathrm{O} . \mathrm{N}$. of O decreases from O in $\mathrm{O}_2$ to -2 in $\mathrm{H}_2 \mathrm{O}$, therefore, $\mathrm{O}_2$ acts as a oxidising agent. Thus, this reaction is a redox reaction.