ExamGOAL
Books
37
Subjective

$$ \begin{aligned} & \text { Following data is given for the reaction } \\ & \mathrm{CaCO}_3(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_2(\mathrm{~g}) \\ & \Delta_f H^{\ominus}[\mathrm{CaO}(s)]=-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_f H^{\ominus}\left[\mathrm{CO}_2(g)\right]=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_f H^{\ominus}\left[\mathrm{CaCO}_3(s)\right]=-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$$

Predict the effect of temperature on the equilibrium constant of the above reaction.

Explanation

Given that,

$\begin{aligned} \Delta_f H^{\ominus}[\mathrm{CaO}(s)] & =-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \Delta_f H^{\ominus}\left[\mathrm{CO}_2(g)\right] & =-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \Delta_f H^{\ominus}\left[\mathrm{CaCO}_3(s)\right] & =-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}\end{aligned}$

In the reaction,

$\begin{gathered}\mathrm{CaCO}_3(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_2(g) \\ \Delta_f H^{\ominus}=\Delta_f H^{\ominus}[\mathrm{CaO}(\mathrm{s})]+\Delta_f H^{\ominus}\left[\mathrm{CO}_2(g)\right]-\Delta_f H^{\ominus}\left[\mathrm{CaCO}_3(s)\right] \\ \therefore\quad\Delta_f H^{\ominus}=-635.1+(-393.5)-(-1206.9)=178.3 \mathrm{kJmol}^{-1}\end{gathered}$

Because $\Delta H$ value is positive, so the reaction is endothermic. Hence, according to Le-Chatelier's principle, reaction will proceed in forward direction on increasing temperature. Thus, the value of equilibrium constant for the reaction increases.

38
Subjective

Match the following equilibria with the corresponding condition.

A. Liquid $$\rightleftharpoons$$ Vapour 1. Saturated solution
B. Solid $$\rightleftharpoons$$ Liquid 2. Boiling point
C. Solid $$\rightleftharpoons$$ Vapour 3. Sublimation point
D. Solute (s) $$\rightleftharpoons$$ Solute (solution) 4. Melting point
5. Unsaturated solution

Explanation

A. $\rightarrow(2)$

B. $\rightarrow(4)$

C. $\rightarrow(3)$

D. $\rightarrow$ (1)

A. Liquid $\rightleftharpoons$ Vapour equilibrium exists at the boiling point.

B. Solid $\rightleftharpoons$ Liquid equilibrium exists at the melting point.

C. Solid $\rightleftharpoons$ Vapour equilibrium exists at the sublimation point.

D. Solute $(s) \rightleftharpoons$ Solute (solution) equilibrium exists at saturated solution.

39
Subjective

For the reaction, $\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_3(\mathrm{~g})$

Equilibrium constant, $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_3\right]^2}{\left[\mathrm{~N}_2\right]\left[\mathrm{H}_2\right]^3}$

Some reactions are written below in Column I and their equilibrium constants in terms of $K_c$ are written in Column II. Match the following reactions with the corresponding equilibrium constant.

Column I
(Reaction)
Column II
(Equilibrium constant)
A. $$
2 \mathrm{~N}_2(\mathrm{~g})+6 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NH}_3(\mathrm{~g})
$$
1. $$
2 K_c
$$
B. $$
2 \mathrm{NH}_3(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g})
$$
2. $$
K_c^{1 / 2}
$$
C. $$
\frac{1}{2} \mathrm{~N}_2(\mathrm{~g})+\frac{3}{2} \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_3(\mathrm{~g})
$$
3. $$
\frac{1}{K_c}
$$
4. $$
K_c^2
$$

Explanation

$$\mathrm{A.\to(4)\quad B.\to(3)\quad C.\to(2)}$$

For the reaction,

$\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_3(\mathrm{~g})$

Equilibrium constant $K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_3\right]^2}{\left[\mathrm{~N}_2\right]\left[\mathrm{H}_2\right]^3}$

A. The given reaction $\left[2 \mathrm{~N}_2(g)+6 \mathrm{H}_2(g) \rightleftharpoons 4 \mathrm{NH}_3(g)\right]$ is twice the above reaction. Hence, $K=K_c^2$

B. The reaction $\left[2 \mathrm{NH}_3(g) \rightleftharpoons \mathrm{N}_2(g)+3 \mathrm{H}_2(g)\right]$ is reverse of the above reaction. Hence, $K=\frac{1}{K_c}$

C. The reaction $\left[\frac{1}{2} \mathrm{~N}_2(g)+\frac{3}{2} \mathrm{H}_2(g) \rightleftharpoons \mathrm{NH}_3(g)\right]$ is half of the above reaction. Hence, $K=\sqrt{K_c}=K_c^{\frac{1}{2}}$.

40
Subjective

Match standard free energy of the reaction with the corresponding equilibrium constant.

A. $$
\Delta G^{\ominus}>0
$$
1. $$K > 1$$
B. $$
\Delta G^{\ominus}<0
$$
2. $$K=1$$
C. $$
\Delta G^{\ominus}=0
$$
3. $$K=0$$
4. $$K < 1$$

Explanation

A. $\rightarrow(4)$

B. $\rightarrow$ (1)

C. $\rightarrow(2)$

As we know that, $\Delta G^{\ominus}=-R T \ln K$

A. If $\Delta G^{\circ}>0$, i.e., $\Delta G^{\circ}$ is positive, then $\ln K$ is negative i.e., $K<1$.

B. If $\Delta G^{\circ}<0$, i.e., $\Delta G^{\circ}$ is negative then $\ln K$ is positive i.e., $K>1$.

C. If $\Delta G^{\ominus}=0, \ln K=0$, i.e., $K=1$.

41
Subjective

Match the following species with the corresponding conjugate acid.

Species Conjugate acid
A. $$
\mathrm{NH}_3
$$
1. $$
\mathrm{CO}_3^{2-}
$$
B. $$
\mathrm{HCO}_3^{-}
$$
2. $$
\mathrm{NH}_4^{+}
$$
C. $$
\mathrm{H}_2 \mathrm{O}
$$
3. $$
\mathrm{H}_3 \mathrm{O}^{+}
$$
D. $$
\mathrm{HSO}_4^{-}
$$
4. $$
\mathrm{H}_2 \mathrm{SO}_4
$$
5. $$
\mathrm{H}_2 \mathrm{CO}_3
$$

Explanation

A. $\rightarrow$ (2)

B. $\rightarrow(5)$

C. $\rightarrow(3)$

D. $\rightarrow$ (4)

As conjugate acid $\rightarrow$ Base $+\mathrm{H}^{+}$

A. $\mathrm{NH}_3+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_4^{+}$

B. $\mathrm{HCO}_3^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_2 \mathrm{CO}_3$

C. $\mathrm{H}_2 \mathrm{O}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_3 \mathrm{O}^{+}$

D. $\mathrm{HSO}_4^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_2 \mathrm{SO}_4$