ExamGOAL
Books
35
Subjective

Calculate the volume of water required to dissolve 0.1 g lead (II) chloride to get a saturated solution.

$\left(\mathrm{K}_{\text {sp }}\right.$ of $\mathrm{PbCl}_2=3.2 \times 10^{-8}$, atomic mass of $\left.\mathrm{Pb}=207 \mathrm{u}\right)$

Explanation

Suppose, solubility of PbCl$$_2$$ in water is s mol L$$^{-1}$$

$\begin{aligned} \mathrm{PbCl}_2(\mathrm{~s}) & \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+\underset{2 \mathrm{~s}}{2 \mathrm{Cl}^{-}}(\mathrm{aq}) \\ \mathrm{s}_{\mathrm{sp}} & =\left[\mathrm{Pb}^{2 \uparrow}\right] \cdot\left[\mathrm{Cl}^{-}\right]^2 \\ K_{\mathrm{sp}} & =[\mathrm{s}][2 \mathrm{~s}]^2=4 s^3 \\ 3.2 \times 10^{-8} & =4 \mathrm{~s}^3 \\ s^3 & =\frac{3.2 \times 10^{-8}}{4}=0.8 \times 10^{-8} \\ s^3 & =8.0 \times 10^{-9}\end{aligned}$

$$\begin{aligned} \text{Solubility of}\quad \mathrm{PbCl}_2, \mathrm{~s} & =2 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \\ \text{Solubility of}\quad \mathrm{PbCl}_2 \text { in } \mathrm{gL}^{-1} & =278 \times 2 \times 10^{-3}=0.556 \mathrm{~g} \mathrm{~L}^{-1} \end{aligned}$$

$\left(\because\right.$ Molar mass of $\left.\mathrm{PbCl}_2=207+(2 \times 35.5)=278\right)$

0.556 g of $\mathrm{PbCl}_2$ dissolve in 1 L of water.

$\therefore \quad 0.1 \mathrm{~g}$ of $\mathrm{PbCl}_2$ will dissolve in $=\frac{1 \times 0.1}{0.556} \mathrm{~L}$ of water $$=0.1798 \mathrm{~L}$$

To make a saturated solution, dissolution of $0.1 \mathrm{g~PbCl}_2$ in $0.1798 \mathrm{~L} \approx 0.2 \mathrm{~L}$ of water will be required.

36
Subjective

A reaction between ammonia and boron trifluoride is given below.

$$: \mathrm{NH}_3+\mathrm{BF}_3 \longrightarrow \mathrm{H}_3 \mathrm{~N}: \mathrm{BF}_3$$

Identify the acid and base in this reaction. Which theory explains it? What is the hybridisation of $B$ and $N$ in the reactants?

Explanation

Although $\mathrm{BF}_3$ does not have a proton but acts as Lewis acid as it is an electron deficient compound. It reacts with $\mathrm{NH}_3$ by accepting the lone pair of electrons from $\mathrm{NH}_3$ and complete its octet. The reaction can be represented by

$$\mathrm{BF}_3+: \mathrm{NH}_3 \longrightarrow \mathrm{BF}_3 \leftarrow \mathrm{NH}_3$$

Lewis electronic theory of acids and bases can explain it. Boron in $\mathrm{BF}_3$ is $s p^2$ hybridised where N in $\mathrm{NH}_3$ is $s p^3$ hybridised.

37
Subjective

$$ \begin{aligned} & \text { Following data is given for the reaction } \\ & \mathrm{CaCO}_3(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_2(\mathrm{~g}) \\ & \Delta_f H^{\ominus}[\mathrm{CaO}(s)]=-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_f H^{\ominus}\left[\mathrm{CO}_2(g)\right]=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_f H^{\ominus}\left[\mathrm{CaCO}_3(s)\right]=-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$$

Predict the effect of temperature on the equilibrium constant of the above reaction.

Explanation

Given that,

$\begin{aligned} \Delta_f H^{\ominus}[\mathrm{CaO}(s)] & =-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \Delta_f H^{\ominus}\left[\mathrm{CO}_2(g)\right] & =-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \Delta_f H^{\ominus}\left[\mathrm{CaCO}_3(s)\right] & =-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}\end{aligned}$

In the reaction,

$\begin{gathered}\mathrm{CaCO}_3(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_2(g) \\ \Delta_f H^{\ominus}=\Delta_f H^{\ominus}[\mathrm{CaO}(\mathrm{s})]+\Delta_f H^{\ominus}\left[\mathrm{CO}_2(g)\right]-\Delta_f H^{\ominus}\left[\mathrm{CaCO}_3(s)\right] \\ \therefore\quad\Delta_f H^{\ominus}=-635.1+(-393.5)-(-1206.9)=178.3 \mathrm{kJmol}^{-1}\end{gathered}$

Because $\Delta H$ value is positive, so the reaction is endothermic. Hence, according to Le-Chatelier's principle, reaction will proceed in forward direction on increasing temperature. Thus, the value of equilibrium constant for the reaction increases.

38
Subjective

Match the following equilibria with the corresponding condition.

A. Liquid $$\rightleftharpoons$$ Vapour 1. Saturated solution
B. Solid $$\rightleftharpoons$$ Liquid 2. Boiling point
C. Solid $$\rightleftharpoons$$ Vapour 3. Sublimation point
D. Solute (s) $$\rightleftharpoons$$ Solute (solution) 4. Melting point
5. Unsaturated solution

Explanation

A. $\rightarrow(2)$

B. $\rightarrow(4)$

C. $\rightarrow(3)$

D. $\rightarrow$ (1)

A. Liquid $\rightleftharpoons$ Vapour equilibrium exists at the boiling point.

B. Solid $\rightleftharpoons$ Liquid equilibrium exists at the melting point.

C. Solid $\rightleftharpoons$ Vapour equilibrium exists at the sublimation point.

D. Solute $(s) \rightleftharpoons$ Solute (solution) equilibrium exists at saturated solution.

39
Subjective

For the reaction, $\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_3(\mathrm{~g})$

Equilibrium constant, $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_3\right]^2}{\left[\mathrm{~N}_2\right]\left[\mathrm{H}_2\right]^3}$

Some reactions are written below in Column I and their equilibrium constants in terms of $K_c$ are written in Column II. Match the following reactions with the corresponding equilibrium constant.

Column I
(Reaction)
Column II
(Equilibrium constant)
A. $$
2 \mathrm{~N}_2(\mathrm{~g})+6 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NH}_3(\mathrm{~g})
$$
1. $$
2 K_c
$$
B. $$
2 \mathrm{NH}_3(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g})
$$
2. $$
K_c^{1 / 2}
$$
C. $$
\frac{1}{2} \mathrm{~N}_2(\mathrm{~g})+\frac{3}{2} \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_3(\mathrm{~g})
$$
3. $$
\frac{1}{K_c}
$$
4. $$
K_c^2
$$

Explanation

$$\mathrm{A.\to(4)\quad B.\to(3)\quad C.\to(2)}$$

For the reaction,

$\mathrm{N}_2(\mathrm{~g})+3 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_3(\mathrm{~g})$

Equilibrium constant $K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_3\right]^2}{\left[\mathrm{~N}_2\right]\left[\mathrm{H}_2\right]^3}$

A. The given reaction $\left[2 \mathrm{~N}_2(g)+6 \mathrm{H}_2(g) \rightleftharpoons 4 \mathrm{NH}_3(g)\right]$ is twice the above reaction. Hence, $K=K_c^2$

B. The reaction $\left[2 \mathrm{NH}_3(g) \rightleftharpoons \mathrm{N}_2(g)+3 \mathrm{H}_2(g)\right]$ is reverse of the above reaction. Hence, $K=\frac{1}{K_c}$

C. The reaction $\left[\frac{1}{2} \mathrm{~N}_2(g)+\frac{3}{2} \mathrm{H}_2(g) \rightleftharpoons \mathrm{NH}_3(g)\right]$ is half of the above reaction. Hence, $K=\sqrt{K_c}=K_c^{\frac{1}{2}}$.